六个步骤,改进你的精密ADC信号链设计!

Excelpoint世健 2021-04-16 00:00




精密信号链设计人员面临着满足中等带宽应用中噪声性能要求的挑战,最后往往要在噪声性能和精度之间做出权衡。缩短上市时间并在第一时间完成正确的设计则进一步增加了压力。持续时间Σ-Δ (CTSD) ADC本身具有架构优势,简化了信号链设计,从而缩减了解决方案尺寸,有助于客户缩短终端产品的上市时间。为了说明CTSD ADC本身的架构优势及其如何适用于各种精密中等带宽应用,我们将深入分析信号链设计,让设计人员了解CTSD技术的关键优势,并探索AD4134 精密ADC易于设计的特性




在许多数字处理应用和算法中,在过去的20年里,日益要求所有转换器技术都具有更高的分辨率和精度。通过使用外部数字控制器,借助平均和优化的滤波方案等软件技术可提取并提供更精确的结果,从而提高ADC受限的分辨率/精度。为了减少数字微控制器或DSP的大量后处理工作,设计人员可使用高性能精密ADC。这将减少数字方面的优化时间,也可以考虑使用成本较低的微控制器或DSP。精密ADC的应用和市场很广泛:


  • 工业仪器仪表:振动分析、温度/压力/应力/流量测量、动态信号分析、声学分析

  • 医疗仪器仪表:电生理学、血液分析、心电图(EKG/ECG)

  • 防务应用:声纳、遥测

  • 测试和测量:音频测试、硬件循环、电能质量分析


图1.精密ADC信号链示例。


由ADC处理的模拟输入信号可以是带有电压、电流输出的传感器信号,也可以是带宽范围从直流到几百kHz的反馈控制环路信号。ADC数字输出格式和速率取决于以下数字控制器所需的应用和后处理。一般而言,信号链设计人员遵循奈奎斯特采样准则,将数字控制器的ADC输出数据速率(ODR)设置为至少是输入频率的两倍。大多数ADC允许基于相关信号频带灵活地调整输出数据速率。


对于目前可用的ADC,在ADC可与输入信号交互前涉及到几个信号调理阶段。具有严格要求的信号调理电路需要围绕特定和单独的ADC技术进行设计和定制,确保能够实现ADC数据手册的性能。选择ADC后,信号链设计人员的工作并没有结束。通常需要花费大量时间和精力来设计外设并进行调整。ADI公司的设计仿真工具和模型库可为设计人员提供技术支持,帮助他们应对设计挑战。



新方法:利用CTSD架构简化设计之旅


CTSD架构主要用于音频和高速ADC,现在针对精密应用量身定制,可实现高精度,同时利用其独特信号链简化特性。利用此架构可以减轻设计外设的工作量。图2显示了如何通过使用这种新的解决方案来实现高通道密度,将当前ADC信号链简化并缩减56%,图中只是其中的一小部分。


图2.具有ADI易于使用的新CTSD ADC的小尺寸解决方案。


为了说明CTSD ADC技术如何简化信号链设计,本文重点介绍一般应用的现有信号链中涉及的一些关键挑战,并演示了CTSD ADC如何缓解这些挑战。


因此,我们首先介绍现有信号链中涉及的几个设计步骤,第一个任务是选择适合目标应用的正确ADC。


第1步:选择ADC


除了应用所需的最终数字输出的分辨率和精度外,从广泛的可用范围中选择合适的ADC时,信号带宽、ODR、信号类型和要处理的范围也是重要考虑因素。一般而言,在大多数应用中,数字控制器要求使用算法来处理输入信号的幅度、相位或频率。


为了准确地测量前面的任何一个因素,需要尽量减小数字化过程中增加的误差。表1中详细列出了主要误差及其相应的测量术语, 数据转换基本指南中提供了进一步详细说明。


表1.ADC误差和性能指标


表1中的性能指标与信号幅度和频率有关,通常称为交流性能参数。


对于直流或近直流应用,如处理50 Hz至60 Hz输入信号的功率计量,必须考虑偏置、增益、INL和闪烁噪声等ADC误差。这些直流性能参数也需要针对应用预期用途具有一定的温度稳定性。


ADI提供各种行业领先的高性能ADC,以满足多个应用的系统需求,例如基于精度、速度或有限功耗预算的应用。仅比较两组ADC规格不足以正确选择ADC。还必须考虑整体系统性能和设计挑战,这才是选择ADC技术或架构的关键所在。传统上首选两大类ADC架构。常用的是 逐次逼近寄存器 (SAR) ADC,其遵循简单的奈奎斯特准则。它指出,如果以其频率的两倍采样,可重构信号。SAR ADC的优势在于出色的直流性能、小尺寸、低延迟以及通过ODR进行功耗调节。


第二种技术选项是离散时间Σ-Δ (DTSD) ADC,其工作原理是样本数目越大,丢失的信息就越少。因此,采样频率远高于规定的奈奎斯特频率,这种方案称为过采样。此架构还有一个优势是,由于采样而增加的误差可在目标频带内最小化。因此,DTSD ADC兼具出色的直流和交流性能,但延迟较高。


图3展示了SAR和DTSD ADC的典型模拟输入带宽,以及一些不同速度和分辨率的常用产品选择。也可使用精密快速搜索功能 帮助您选择ADC。


图3.精密ADC架构定位。


此外,现在还有一种新型精密ADC可用。这些ADC基于DTSD ADC,与DTSD ADC性能相当,但在简化整个信号链设计过程方面具有独特的优势。这个全新的ADC系列可以解决现有信号链后续几个设计步骤中比较突出的挑战。


第2步:输入与ADC接口


由ADC处理其输出的传感器可能具有非常高的灵敏度。设计人员必须清楚地知道传感器将与之接口的ADC输入结构,确保ADC误差不会影响实际传感器信号或使其失真。


在传统SAR、DTSD ADC中,输入结构称为开关电容采样保持电路,如图4所示。在每个采样时钟边缘,当采样开关改变其ON/OFF状态时,需要支持有限电流需求,以便将保持电容充放电至一个新的采样输入值。此电流需要通过输入源提供,在我们讨论的示例中,这个输入源是传感器。此外,开关本身有一些片内寄生电容,会将一些电荷注入电源,称为电荷注入反冲。由此增加的误差源也需要由传感器吸收,以免对传感器信号造成不利影响。


图4.(a)开关电容电荷注入反冲到传感器,(b)使用输入缓冲器隔离反冲效应。


大多数传感器无法提供这种电流幅度,表明它们不能直接驱动开关电路。在另一种情况下,即使传感器能够支持这些电流需求,传感器的有限阻抗也会在ADC输入端增加误差。电荷注入电流与输入成函数关系,此电流将会在传感器阻抗上引起与输入相关的压降。如图4a所示,ADC的输入错误。在传感器和ADC之间放置一个驱动放大器可以解决这些问题,如图4b所示。


现在我们需要为此放大器设定标准。首先,放大器应支持充电电流并能够吸收电荷注入反冲。其次,该放大器的输出需要在采样边缘的末端完全稳定,使得对ADC输入采样时不会增加误差。这意味着放大器应能提供瞬时电流阶跃,映射为具有高压摆率,并对这些瞬态事件提供快速建立响应,映射为具有高带宽。随着ADC的采样频率和分辨率的增加,能否满足这些需求变得至关重要。


设计人员,特别是处理中等带宽应用的设计人员所面临的一大挑战是为ADC确定合适的放大器。如前所述,ADI提供了一组仿真模型和精密ADC驱动器工具来简化此步骤,但对于设计人员来说,这是实现ADC数据手册性能的额外设计步骤。一些新时代的SAR和DTSD ADC通过使用新颖的采样技术来完全降低瞬态电流需求,或采用集成放大器应对这一挑战。但这两种解决方案都限制了信号带宽的范围或削弱了ADC的性能。


CTSD ADC的优势:CTSD ADC通过为易于驱动的电阻输入而非开关电容输入提供新的选项,来解决这个问题。这表明对高带宽、大压摆率的放大器没有硬性要求。如果传感器可直接驱动此阻性负载,则可直接与CTSD ADC接口;否则可在传感器和CTSD ADC之间连接任何低带宽、低噪声放大器。


第三步:基准电压源与ADC接口


与基准电压源接口涉及的挑战与输入接口类似。传统ADC的基准电压源输入也是开关电容。在每个采样时钟边缘,基准电压源需要对内部电容充电,因此需要具有良好建立时间的大开关电流。


可用的基准电压源IC不支持大开关电流需求,并且带宽有限。第二个接口挑战是来自这些基准电压源的噪声比ADC的噪声大。为了滤除这种噪声,使用了一阶RC电路。一方面,我们限制基准电压源的带宽以减少噪声,另一方面,我们需要快速建立时间。这是两个需要同时满足的相反要求。因此,使用低噪声缓冲器来驱动ADC基准引脚,如图5b所示。此缓冲器的压摆率和带宽基于ADC的采样频率和分辨率来决定。


同样,与我们的精密输入驱动器工具一样,ADI也提供针对ADC仿真和选择正确的基准电压源缓冲区的工具。与输入一样,一些新时代的SAR和DTSD ADC也提供集成基准电压源缓冲区选项,但具有性能和带宽限制。


图5.(a)开关电容电荷注入反冲到基准电压源

IC (b)使用基准电压源缓冲区隔离反冲效应。


CTSD ADC的优势:使用CTSD ADC可完全跳过此设计步骤,因为它为驱动阻性负载提供一种新的简便选项,而不需要此类高带宽、大压摆率的缓冲器。具有低通滤波器的基准电压源IC可直接与基准引脚接口。


第四步:使信号链不受干扰影响


对连续信号进行采样和数字化处理会导致信息丢失,这称为量化噪声。采样频率和位数决定了ADC架构的性能限制。解决基准电压源和输入的性能和接口挑战之后,下一个难题是解决高频(HF)干扰源/噪声折叠到目标低频带宽的问题。这称为混叠或折回。这些进入目标带宽的高频或带外干扰源的反射图像导致信噪比(SNR)降低。根据采样准则,采样频率周围的任何信号音都会在带内折回,如图6所示,在目标频带内产生不必要的信息或错误。有关混叠的更多详细信息参见教程MT-002: 奈奎斯特准则对数据采样系统设计有何意义。


图6.由于采样使带外干扰源混叠/折回进入目标频带。


缓解折回效应的一种解决方案是使用一种称为抗混叠滤波器(AAF)的低通滤波器来衰减不必要的干扰源幅度,这样当衰减后的干扰源折回带内时,可以保持所需的信噪比。该低通滤波器通常集成有驱动器放大器,如图7所示。


图7.使用抗混叠滤波器缓解对带内性能造成的混叠效应。


设计此放大器时,最大的挑战是在快速建立和低通滤波要求之间寻求平衡。另一个挑战是该解决方案需要针对每个应用需求进行微调,这就对各个应用采用单个平台设计造成了限制。ADI有很多 抗混叠滤波器工具设计 ,可帮助设计人员克服此挑战。


CTSD ADC的优势:这种抗扰性可由CTSD ADC本身具有的混叠抑制特性解决,这是CTSD ADC独有的特性。采用这种技术的ADC不需要AAF。因此,我们有望直接将CTSD ADC轻松地连接到传感器,向这个目标又近了一步。


第五步:选择ADC时钟频率和输出数据速率


接下来,我们来讨论两种传统ADC类型的时钟要求。DTSD是过采样的ADC,这是指ADC以高于奈奎斯特采样速率进行采样的ADC。但是,将ADC过采样数据直接提供给外部数字控制器,大量的冗余信息会使其过载。在过采样系统中,核心ADC输出使用片内数字滤波器进行抽取,使最终ADC数字输出的数据速率更低,通常是信号频率的两倍。


对于DTSD ADC,设计人员需要计划为核心ADC提供高频采样时钟,并设定所需的输出数据速率。ADC将在这个所需的ODR和ODR时钟上提供最终数字输出。数字控制器使用此ODR时钟输入数据。


接下来,我们解决SAR ADC的时钟要求,通常遵循奈奎斯特准则。这里,ADC的采样时钟由数字控制器提供,时钟也充当ODR。但是,由于需要有效地控制采样保持时序才能获得ADC的出色性能,因此该时钟的时序灵活性较低,这也表明数字输出时序需要尽可能与这些要求保持一致。


图8.(a) DTSD ADC和(b) SAR ADC的时钟要求。


了解这两种架构的时钟要求后,可以看到ODR耦合到ADC的采样时钟,这在ODR可以动态漂移或改变或需要调谐为模拟输入信号频率的许多系统中都是一个限制因素。


CTSD ADC的优势:CTSD ADC可与新型异步采样速率转换器(ASRC)耦合,能够以任何所需的ODR对核心ADC进行重新采样。ASRC还使设计人员能够将ODR精确地设置为任意频率,并突破了将ODR限制为采样频率倍数的旧限制。ODR的频率和时序要求现在完全属于数字接口的功能范围,并且与ADC采样频率无关。该特性为信号链设计人员简化了数字隔离设计。


第六步:与外部数字控制器接口


传统上,ADC与数字控制器通信有两种类型的数据接口模式。一种类型将ADC用作主机,提供数字/ODR时钟,并决定数字控制器的时钟边缘,以便输入ADC数据。另一种类型为托管模式(接收器模式),其中数字控制器是主机,提供ODR时钟,并决定输入ADC数据的时钟边缘。


从第5步开始,如果设计人员选择DTSD ADC,该ADC将提供ODR时钟,因此充当后接的数字控制器的主机。如果选择了SAR ADC,则数字控制器需要提供ODR时钟,这意味着SAR ADC将始终配置为托管外设。因此,存在明显的限制:一旦选择ADC架构,数字接口就限制为主机模式或托管模式。目前,无论ADC架构如何,都无法灵活地选择接口。


CTSD ADC的优势:与CTSD ADC结合的新型ASRC使设计人员能够独立配置ADC数据接口模式。这为一些应用开启了全新的机会,在这些应用中,无论ADC架构如何,都可在适合数字控制器应用的任何模式中配置高性能ADC。



将器件连接起来


图9显示了传统信号链的构建模块,其模拟前端(AFE)包含一个ADC输入驱动器、一个混叠抑制滤波器和一个可通过CTSD ADC极大简化的基准电压源缓冲区。图10a显示了一个采用DTSD ADC的示例信号链,该信号链需要大量的设计工作来微调和确定ADC的数据手册性能。为了简化客户流程,ADI提供了 参考设计 ,可针对这些ADC的各种应用重新使用或重新调整。


图9.分别采用传统精密ADC与CTSD ADC的信号链构建模块。


图10b显示了具有CTSD ADC及其简化模拟输入前端(AFE)的信号链,因为其ADC核心在输入和基准电压源端没有开关电容采样器。开关采样器移至ADC核心的后一级,使信号输入和基准电压源输入为纯阻性。由此得出了几乎无采样混叠的ADC,使其自成其类。此外,这类ADC的信号转换函数模拟抗混叠滤波器响应,这意味着它本身就能衰减噪声干扰源。利用CTSD技术,ADC可简化为一个简单的即插即用组件。


图10.使用(a) DTSD技术与(b) CTSD技术的示例信号链。


总之,CTSD ADC简化了信号链设计,同时实现了与传统ADC信号链具有相同性能水平的系统解决方案,并具有以下优势:

  • 提供了具有出色通道间相位匹配的无混叠、低延迟信号链
  • 简化了模拟前端,无需选择并微调高带宽输入和基准电压源驱动缓冲区的额外步骤,可实现更高的通道密度

  • 打破了ODR与采样时钟成函数关系的障碍

  • 独立控制与外部数字控制器的接口

  • 提高了信号链可靠性评级,这是外设组件减少带来的好处

  • 减小了尺寸,BOM减少56%,为客户缩短了产品上市时间







原文转自亚德诺半导体


立即扫码购买 ↑ ↑ ↑



关于世健

亚太区领先的元器件授权代理商


世健(Excelpoint)是完整解决方案的供应商,为亚洲电子厂商包括原设备生产商(OEM)、原设计生产商(ODM)和电子制造服务提供商(EMS)提供优质的元器件、工程设计及供应链管理服务。


世健是新加坡主板上市公司,拥有超过30年历史。世健中国区总部设于香港,目前在中国拥有十多家分公司和办事处,遍及中国主要大中型城市。凭借专业的研发团队、顶尖的现场应用支持以及丰富的市场经验,世健在中国业内享有领先地位。






点击“阅读原文”,联系我们
↓↓↓
Excelpoint世健 世健系统(香港)有限公司是新加坡世健科技有限公司的子公司。作为亚太区领先的电子元器件分销商,世健为亚洲电子厂商,包括原设备生产商(OEM)、原设计生产商(ODM)和电子制造服务提供商(EMS)提供优质的元器件、工程设计及供应链管理服务。
评论
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 65浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 149浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 75浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 161浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 62浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 157浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 151浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 63浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 119浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦