欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 1105621549
高可靠新能源行业顶尖自媒体
在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注微信公众号:电力电子技术与新能源(Micro_Grid),论坛:www.21micro-grid.com,建立的初衷就是为了技术交流,作为一个与产品打交道的技术人员,市场产品信息和行业技术动态也是必不可少的,希望大家不忘初心,怀有一颗敬畏之心,做出更好的产品!
电力电子技术与新能源论坛
www.21micro-grid.com
小编推荐值得一看的书单
电动汽车车载充电机与车载DCDC转换器及充电桩
电动汽车充电桩电气、硬件、软件技术解析
充电桩模块电路
Delta_OBC双向充电_High-Efficiency High-Density GaN-Based 6.6kW
[氮化镓]3.3-6.6KW汽车车载充电机充电桩原理及设计
6.6KW Bi-Directional EV On-Board Charger_Design_File
3KVA UPS 硬件学习
UPS IGBT PFC整流器
[施耐德]无变压器结构的UPS技术
1、 虽然可用的存储空间看起来比section的长度要大,但是链接器为何提示“placement fails for object”?
这种情况一般是因为段的空间的分配是并不是我们想象中的连续的一个紧挨一个,而是被编译器给“分块”管理了。在内存地址分配时,一个段需要完全适配到页(page)中,或者从页的边界开始连续分配;为了满足这个要求,段在分配到页中时,可能无法完全利用某些页,导致内存地址中产生了间隙(hole),使得实际所需要的内存空间超过了根据变量大小计算出来的理论值。编译器这样做的目的是为了优化数据页(DP)寄存器的加载,达到减小代码尺寸和优化程序性能的目的。例如,针对一个数组,如果数组的长度小于64字(words),则编译器仅需安全地加载DP一次就可以访问数组的全部元素;如果数组长度大于64字,则在访问每64字的数组元素时,编译器仅需加载一次DP,当然如果访问多个64字的数组元素则仍需要多次加载DP。
举例说明:
在cmd里定义:
RAMM1 : origin = 0x000400, length = 0x000400 /* on-chip RAM block M1 */
commbuf : > RAMM1 PAGE = 1
在main.c里定义以下几个变量
#pragma DATA_SECTION(sendT, "commbuf")
Uint16 sendT[260];
#pragma DATA_SECTION(receT, "commbuf")
Uint16 receT[260];
#pragma DATA_SECTION(CntPPR, "commbuf")
Uint32 CntPPR[250];
表面上共需260+260+250*2=1020,commbuf正好放得下.但ccs提示空间不够:
(run placement fails for object "commbuf", size 0x474 (page 1).
Available ranges: RAMM1 size: 0x400 unused: 0x400 max hole: 0x400)
产生错误的原因是根据DP加载的原则,page被划分为64word的小单元,而数组被存储在连续的、整块的单元上,未使用到的空间不会再分配给其它数组或者变量使用。所以16位260长度的数组实际占用了64*5=320 (64*4=256<260),32位500的长度实际占用了64*8=512,占用的总长度为:320*2+512=1152=0x480。
按照CCS的提示,commbuf占用空间是320*2+500=1140=0x474,但是事实上32位数组占据的最后那个page已经无法被别的变量使用了,所以如果还有新的变量出现的话,会提示RAMM1块缺少的地址更多。
根据我们的需要,可以在每次之间内存读取操作之前都加载DP,这样就可以禁用上面的“分块”管理特性了。这样做虽然可以减小内存地址空间中的“间隙”,但是每一次访问内存都需要加载DP,反而大大地增加了代码的尺寸,实在是得不偿失(看起来很少有人会这么做)。我们可以通过启用编译器的-disable_dp_load_opt,或者叫-md选项来实现这一方法。
确认某个段是否被编译器给分块管理的方法就是使用.bss和.usect指令。
2、 链接器提示“placement fails for object '.text'”,我们如何为.text分配更多的内存?
.text段中包含包含所有可执行的代码,以及编译器编译产生的常量。如果我们的代码比较大,超过了cmd文件中默认分配的空间,则.text无法适配到内存空间中,就会产生上面的错误。通常有三种方法可以来为其分配更多的空间。
方法一:修改cmd
方法二:分割.text,把它平均分配到多个内存区域中
这个方法比较直观,前提是几个内存区域的总长度要满足要求。例如:
.text : >> FLASHA | FLASHC | FLASHD, PAGE = 0
方法三:完整分割法
这个名字有点古怪,它本质仍然是把.text分割,目标区域也可以有多个,但是当第一个区域就满足要求时,则只把它分配到第一个区域中,剩余的目前区域实际上未被使用到。
在实际编程实现时,这些方法仍然存在一定的限制,包括:
1. 在包含控制加速器CLA 的Piccolo器件中,只有特定的内存区域可被CLA所使用。
2. 在含有DMA的器件中,并不是所有的内存都可被DMA所访问。
3. 一般情况下,SRAM都是单个机器周期内只能访问一次,但是0等待状态的。但在一些器件中,程序内存控制是包含等待状态的,例如在某些2833x器件中,DMA可访问的数据空间是0等待状态的,但是程序控制是1等待状态的。这些SRAM空间更适合纯数据访问类型的使用。
3、在cmd文件中,可以把连续的Flash模块组合为一个整体的区间吗?
答案是可以的。在Flash的烧写中,可以在同一时间被烧写的Flash的最小长度被称为扇区(sector),所以通过把我们的代码进行分区烧写,就可以把它们对齐到扇区。
Flash模块结合的方法一:直接合并法
以把两个Flash扇区组合为一个段为例:
合并前,两个扇区的定义是:
MEMORY
{
//
// Individual sectors E and F called out in the MEMORY description
//
...
FLASHF : origin = 0x310000, length = 0x008000 /* on-chip FLASH */
FLASHE : origin = 0x318000, length = 0x008000 /* on-chip FLASH */
...
}
合并之后的Flash区间为:
MEMORY
{
//
// Sectors E and F merged into one in the MEMORY description
//
...
FLASH : origin = 0x310000, length = 0x010000 /* on-chip FLASH F & FLASH E */
...
}
方法二:反其道行之,把段分配到多个Flash模块中,与问答36的方法二是一致的,例如:
SECTIONS
{
.text: { *(.text) } >> FLASHE| FLASHH
}
4、 在cmd文件中,可以把相邻的SARAM模块组合为一个整体的区间吗?
答案是可以的,方法与Flash组合的方法一样。
虽然这样做是完全没有问题的,但需要牢记SARAM模块都是单个机器周期内只能访问一次的,所以为了优化程序的性能,最好把代码给分区到不同的物理SARAM模块中,这样可以减少大量读/写操作中的资源冲突。
5、对于DSP/BIOS的工程,如何了解链接的信息?
DSP/BIOS 的配置工具生成一个cmd文件,规定如何连接所有 DSP/BIOS 生成的程序段,并且默认链接至所有 C/C++ 语言编译程序生成的程序段。当从 RAM 运行程序时,可能只需要这一个cmd文件就够了。但在当从Flash中执行时,很有可能需要生成且连接一个或多个自定义的程序段。
说明:本文来源网络;文中观点仅供分享交流,不代表本公众号立场,转载请注明出处,如涉及版权等问题,请您告知,我们将及时处理。
Please clik the advertisement and exit
重点
如何下载 《华为软件编程规范总则(C语言,C++,JAVA)》高清PDF电子书
点击文章底部阅读原文,访问电力电子技术与新能源论坛(www.21micro-grid.com)下载!
或者转发文章到朋友圈,然后截图发给小编(微信:1768359031),小编将文章发你!
- END -
合作请联系
微信号(QQ号)1768359031
推荐阅读:点击标题阅读
LLC_Calculator__Vector_Method_as_an_Application_of_the_Design
自己总结的电源板Layout的一些注意点
High_Frequency_Transformers_for_HighPower_Converters_Materials
华为电磁兼容性结构设计规范V2.0
Communication-less Coordinative Control of Paralleled Inverters
Soft Switching for SiC MOSFET Three-phase Power Conversion
Designing Compensators for Control of Switching Power Supplies
100KHZ 10KW Interleaved Boost Converter with full SiC MOSFET
华为-单板热设计培训教材
看完有收获?请分享给更多人
公告:
限于篇幅,已做删减,获取原文,加小编微信号(QQ号)1768359031,请注明研究方向或从事行业(比如光伏逆变器硬件),小编对电力电子技术与新能源及微电网的市场发展很看好,对其关键技术很感兴趣,如有技术问题,欢迎加小编微信,共同讨论。另,本公众号也有微信群,如有需要,也可加小编微信号,谢谢!
更多精彩点下方“阅读原文”!
点亮“在看”,小编工资涨1毛!