基于SiC或GaN的功率半导体应用设计

半导体商城 2021-04-09 00:00

  免费入驻咨询热线:400-1027-270 

工程师对电磁干扰,并行化和布局非常熟悉,但是当从基于硅的芯片过渡到碳化硅或宽带隙器件时,需要多加注意。
芯片显示,基于硅(Si)的半导体比宽带隙(WBG)半导体具有十多年的领先优势,主要是碳化硅(SiC)和氮化镓(GaN)占有约90%至98%的市场份额。供应商。WBG半导体虽然还不是成熟的技术,但由于其优于硅的性能优势(包括更高的效率,更高的功率密度,更小的尺寸和更少的冷却),正在跨行业进军。
使用基于SiC或GaN的功率半导体来获得最佳设计需要更多的专业知识和仔细考虑的几个方面,包括开关拓扑,电磁干扰(EMI),布局,并联和栅极驱动器的选择。
解决可靠性和成本问题也很重要。

在可以使用Si,SiC和GaN的重叠应用中,选择取决于密度,效率和成本,一旦设计人员了解了这三个参数,它将指导他们使用哪种开关技术。(图片:英飞凌科技公司)
为什么要搬到WBG?
这一切都始于根据设计目标决定从基于Si的功率器件转变为基于SiC或GaN的功率器件。
英飞凌科技股份公司功率离散技术营销工程师Bob Yee认为,设计人员必须检查三个因素-成本,效率和密度-他们是使用硅还是使用SiC或GaN。据记录,英飞凌凭借其CoolSiC和CoolGaN产品组合在SiC和GaN市场中均占有一席之地,并且还提供Si MOSFETIGBT
Yee说,成本的单位是美元/瓦,效率的单位是输入/输出的百分比,密度的单位是瓦特/立方英寸。“一旦确定了这些目标,那将决定技术的类型以及成本点在哪里。”
Yee表示,尺寸和重量对于了解您使用硅还是WBG至关重要,他举例说说了一个小尺寸适配器设计的示例,该适配器设计可能会在Si MOSFET上使用GaN晶体管(HEMT)。原因?GaN较高的开关频率使设计人员可以缩小磁性材料的尺寸,这占电源尺寸的很大一部分。
他补充说:“设计人员必须了解他们的密度需求,这最终将决定效率,因为以较小的尺寸散热的空间较小。”“这意味着效率需要更高,这迫使设计人员使用WBG。”
魔术线
在过去的几十年中,基于硅的解决方案已经实现了更高的效率和更小的尺寸,但是在某种程度上,WBG半导体提供了更高的效率。Yee举了一个100 W电源的示例-100 W输入和94 W输出,这意味着6%的损耗或94%的效率。他说:“这是一条神奇的路线,您可以将其与硅隔离开来并使用WBG技术。”“如果工程师的设计比例最高可达到94%,那么它就可以很好地覆盖硅,因此没有理由去WBG并支付更多的费用。但是,如果您要实现96%的效率,则除了使用WBG之外,实际上别无选择,除了拓扑结构之外,这还归结于开关本身的特性上的寄生损耗。
Yee补充说:“如果要实现96%的效率,则需要一种利用GaN或SiC的新拓扑。”
一个很好的例子是使用功率因数校正(PFC)拓扑。Yee表示,如果设计人员研究如何针对特定拓扑优化开关技术(例如利用WBG的图腾柱PFC),它将提高性能,这就是无桥图腾柱PFC确实是灌篮的原因。WBG。”

设计人员需要通过查看如何针对特定拓扑优化开关技术以实现最大性能改进来评估WBG设备。(图片:英飞凌科技公司)
挑战性
设计人员可以优化设计,以获得更高的频率,更高的功率密度和更高的效率。这就是一些WBG技术挑战出现的地方。当以更高的频率进行开关时,设计人员需要注意EMI和更高的开关损耗。
WBG的寄生效应小于硅等效效应,这意味着EMI易于提高,因为它的开关速度快得多。Yee说,当您针对高频进行优化时,您需要注意EMI,并且还要考虑其他开关损耗。
SiC FET,SiC JFET和SiC肖特基二极管的制造商UnitedSiC的工程副总裁(VP)Anup Bhalla对此表示同意。“ EMI问题变得更加严重,尤其是当您试图获得更高功率密度的系统优势时,这实际上意味着一切都会变小,而变小的唯一方法是开关速度更快。这使您可以将变压器电感器,散热器和其他东西缩小很多。”
Bhalla说,更快的开关速度也意味着您正在以高的电压和电流变化率运行,这可能会导致较大的电压过冲和EMI问题,因此布局变得更具挑战性。
他说:“电路电源端的这些快速电压变化很容易影响电路的信号端,因为它可以在您不知不觉中在此处或那里发出一个很小的电压尖峰,”他说。“这可能会在错误的时间触发栅极驱动器并炸毁所有东西,因此您在布局时必须格外小心。通常,(客户)需要付出大量的工程努力才能达到目标,并且在过去的四到五年中,很多人都取得了这一飞跃。”
优化布局
布局可能是一个挑战。Yee说最大的障碍是在驾驶员和登机口之间。设计师需要注意三个终端。它是驱动器输出到栅极输入,无论是iw56的SiC还是GaN,以及驱动器源极与WBG器件源极的接地连接。”
Yee说,他们需要最小化的第一件事是环路电感,因为WBG部件的切换速度如此之快。“如果他们不注意这一点,他们将制造出可以发射辐射的无线电。”因此,对于这些连接需要特别注意。为了减轻挑战,英飞凌建议使用具有开尔文源功能的WBG器件。
布局还会影响大功率应用的并联。Bhalla说,并行化非常简单。“这是相同的一般物理原理-您必须保持布局对称且平衡。我们必须使零件之间的参数分布保持相对紧密,以使所有零件看起来都相同,因此它们很容易平行。
他补充说:“设计人员喜欢采用这些快速零件并对其进行并联,就像它们过去与IGBT并联一样。”“这很困难,因为IGBT慢得多,因此并联起来也容易一些。当您尝试同时并行并更快地切换10倍时,您在布局方面必须做更多的工作。
“您必须至少小心进行一半的布局,以使并行设备之间的所有当前路径看起来都差不多。您不能让一个器件的电感是另一器件的五分之一,然后再期望它们并联。那样不行。”
Bhalla说,有时向工程师展示如何解决布局和并行化难题的最简单方法是给他们一个演示板。“我们非常谨慎,以确保当您并行使用这些设备时,用于驱动门的环路必须与路由所有功率/电流的环路保持解耦。栅极驱动电路是一个很小的环路,然后有一个强大的强大环路来驱动所有功率/电流,因此您希望最小化这两件事之间的耦合。如果这样做的话,您就会知道并行化会变得越来越容易。”
使用GaN器件时也是如此。GaN HEMT / E-HEMT器件专家GaN Systems销售和市场副总裁(VP)Larry Spaziani表示:“由于GAN速度很快,工程师们必须比以往更加了解布局。”“如果没有正确的布局,则可能会遇到性能,EMI甚至故障模式的问题。
他补充说:“ GaN不会改变布局规则,但是一切都变得更小,更紧密,更紧凑,因此您必须确保正确执行。”
SiC的细微调整
Yee解释说,SiC可以用作Si IGBT或Si MOSFET的性能替代品,部分原因是驱动结构非常相似-它是通常不使用的部件,并使用标准驱动器,但存在细微差别。
使用Si MOSFET时,驱动电压为10 V至12V。但是,如果您使用SiC,则其为0 V至18 V,并且欠压锁定(UVLO)从Si的8 V变为SiC的13 V,因此设计人员在移动时需要做一些细微的调整Yee解释说,从Si到SiC。
但是,使用GaN时,驱动结构完全不同。他补充说,它与IGBT或MOSFET不同。”您必须使用具有特定开启和关闭时间的特定驱动器。因此,设计人员确实确实需要注意驱动方案,不仅要考虑时序,而且如果要使用并联的GaN FET,则驱动器和GaN FET之间必须具有完美的对称布局。”
需要注意的重要一点是,设计人员可以使用标准的GaN驱动器,只要它支持栅极驱动电压和UVLO,但是同样,它需要进行设计上的调整。大多数供应商建议使用新一代的栅极驱动器,以能够以最快的开关速度进行切换,从而获得最高的性能。

与专用的GaN驱动器相比,使用标准的栅极驱动器来驱动GaN器件需要增加一个负电压电源,以安全地开启和关闭该器件。(图片:英飞凌科技公司)
“只有使用GaN驱动器,您才需要提供正负电压,这就是为什么我们希望客户使用专用驱动器的原因,” Yee说。他推荐英飞凌的1EDF56x3系列GaN栅极驱动器。
并非所有的SiC器件都是相同的
大多数WBG器件不是Si MOSFET或Si晶体管的直接替代品。级联类型的设备是一个例外,它几乎不需要或不需要额外的工程工作。但是,设计人员失去了WBG半导体的某些优势。
一个例子是UnitedSiC的SiC产品,这些产品全部封装在与硅兼容的封装中。这意味着这些器件可以从字面上将它们放入先前使用的IGBT或Si超结MOSFET的插座中。
Bhalla表示,其产品的独特之处之一是,它生产的工作原理类似于MOSFET的基于共源共栅的器件。这些SiC FET包括与cascode优化的Si MOSFET共同封装的SiC快速JET,以提供封装在标准通孔和表面贴装封装中的标准栅极驱动SiC器件。他说:“我们的共源共栅型器件是字面上的插件,除了栅极电阻变化以外,没有任何其他变化。”
另外,这些设备不需要特殊的驱动程序。Bhalla说,它们与所有主要供应商(包括用于SiC MOSFET和“老式” IGBT的较旧供应商)在市场上已有十年之久的标准硅栅极驱动器IC兼容。
他补充说,在过去的两年中,已经开发出许多专门针对SiC的良好栅极驱动器。“它们更昂贵,但是人们已经开始使用它们,我们的设备也与那些更好的驱动程序兼容。”
但是存在一些缺点,包括无法从WBG设备中获得最高性能。Bhalla说:“我们正在出售这些封装中具有很大电感的超快器件。”“当您通过这些封装在电路中施加高压摆率(di / dt)时,只会加剧所有快速开关的问题-更大的过冲,更大的振荡等。”
Bhalla表示,向更好的包装过渡的工作正在进行中。“这是现实:人们正在使用SiC的部分好处,并且在其最终系统中仍能以便宜又脏的方式获得一些好处。
他说:“世界上仍有很大一部分仍在硅中,因此对于他们从硅向碳化硅的转变,我们提供了非常好的垫脚石。”
Bhalla认为,到明年,将会有很多顶侧冷却的表面贴装封装,甚至是表面贴装型模块,它们会将整个半桥集成到一个封装中。他说:“这是必须做的,因为没有它,用户将无法从中获得所有收益,也无法迈向新的高度。”
例如,UnitedSiC最近推出了采用TO-247封装的7mΩRDS(ON),650V器件。(较低的RDS(ON)可以实现更高的效率。)该公司最接近的竞争对手的ON电阻高3倍,但是UnitedSiC遇到的一个问题是封装引线实际上比芯片更热。“因此,我们采用了200A的设备并将其降额为120A,因为在实践中使用该设备时,我们发现引线比芯片本身更热,” Bhalla说。

通过在熟悉的TO-247封装中结合使用第三代SiC JFET和经共源共栅优化的Si MOSFET,UnitedSiC推出了第一款SiC FET,RDS(on)小于10mΩ,具有更高的效率和更低的损耗。与Si IGBT的栅极电压相同。图片:UnitedSiC)
氮化镓的优点
从消费电子到汽车的各个领域的OEM设计师都有一些共同的设计要求:他们想要更高的功率密度和更小的电子产品。
Spaziani说,在较高的频率下,电源系统中的几乎所有组件(电容器,电感器,变压器等)都可以变小,并且由于GaN效率很高且产生的热量很少,因此不需要任何散热器,因此设计人员仅需卸下散热器即可节省空间和成本。或者它们可能保持相同的频率以获得更高的效率。他说,通常,即使效率提高了百分之一,也足以使服务器电源领域的客户从铂金级变为钛级(效率为96%)。
Spaziani说,这与工程师通常所做的没什么不同。无论是使用硅还是其他技术,他们通常都必须优化其电路板,但是栅极驱动有所不同。使用GaN和SiC,栅极驱动行为不同于硅MOSFET和硅IGBT,因此工程师必须首先问的一件事是:“我如何驱动栅极?”
在过去的30年中,MOSFET基本已成为0至12V的栅极驱动电路,而GaN则为–3至6 V或0至10 V或0至5V。Spaziani说,它们都有些不同。“但是好消息是GaN Systems现在已经走了六年的路程,而且我们有大约十二家主要的半导体公司已经创建了驱动GaN的驱动器,所以现在,这只是一个简单的应用决策。”
GaN Systems还提供了一种称为EZDrive的电路,从而消除了对分立驱动器的需求。它将具有大约六个组件的12V MOSFET驱动器转换为6V GaN驱动器。Spaziani说:“它确实很便宜,并且适配器设计人员喜欢这种电路。”“它易于使用,不耗电且体积小,而且他们不必具有定制的栅极驱动器。”
揭穿GaN神话
GaN供应商认为,关于GaN技术仍然存在一些神话,它们都是错误的或半实的。问题包括EMI,并联,雪崩能力,可靠性和成本。
GaN器件的EMI更为严重。GaN提供了出色的开关沿,可实现更高的效率和更高的频率,但这并不意味着EMI会更糟。实际上,供应商说它通常比具有良好布局的硅要好,并且可以使EMI滤波器更小,从而降低了成本。
并行化是一个常见的问题。神话是GaN仅在低功率和高频率下才有优势。例如,GaN Systems的客户以20 kHz到20 MHz的频率进行切换,而高功率的客户则是并联设备。GaN晶体管可以很好地并联。只需确保每个晶体管承载大约相同的电流量即可。例如,如果要并联两个设备,并且一个晶体管承载70%的电流,它将损耗得更快,电路将很快失效。注意:来自不同SiC和GaN供应商的设备在并行方面略有不同。
没有雪崩能力。MOSFET进入雪崩模式以钳制电压尖峰,以保护电路的其余部分免受故障影响。GaN器件制造商解决此问题的方法是在电压额定值中设计很多余量。例如,GaN Systems的650V额定器件只有在超过1000 V时才会发生故障。
可靠性和成本不等于硅。可靠性通过时间故障(FIT)来衡量。硅已经存在了数十年,并且已被大多数供应商证明是可靠的。但是,WBG半导体并非如此。像任何新技术一样,可靠性风险也会增加,成本也会更高。在WBG器件和硅器件之间进行艰难的比较,仅仅是因为硅芯片的可靠性已得到充分证明,而且多年来的大量生产已降低了成本。
但是一些WBG供应商(例如GaN Systems)表示,可靠性[FIT]与硅相当,在过去五年中价格差距明显缩小,价格从3倍降到5倍,再降到1.5倍到2倍。

GaN Systems的器件的FIT率<0.1。图片:GaN Systems)

来源:powerelectronicsnews,作者:Gina Roos,版权归作者所有,仅代表作者个人观点,如有侵权,请联系删除,谢谢!


版权声明

感谢每一位作者的辛苦付出与创作,"半导体商城"均在文中备注了出处来源。若未能找到作者和原始出处,还望谅解,如原创作者看到,欢迎联系“半导体商城”认领。如转载涉及版权等问题,请发送消息至公号后台,我们将在第一时间处理,非常感谢!

半导体商城 半导体商城致力于为半导体业内专业人员提供前沿的半导体技术交流平台.
评论
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 112浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 434浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 198浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 101浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 186浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 399浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 41浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 53浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦