为FPGA应用设计良好的电源管理解决方案并非简单的任务,而目前已经有许多相关的技术讨论。今天为大家分享的内容一方面旨在找到正确解决方案,并选择最合适的电源管理产品,另一方面则是提出如何优化实际解决方案,以用于FPGA之相关建议。
寻找为FPGA供电的最佳解决方案并不简单。许多供应商以适合为FPGA供电的名义推销某些产品,为FPGA供电的DC-DC转换器选择有何特定要求?其实并不多。一般而言,所有电源转换器都可用来为FPGA供电。推荐某些产品通常是基于以下事实:许多FPGA应用需要多个电压轨,例如用于FPGA核心和I/O,还可能需要额外的电压轨来用于DDR内存。将多个DC-DC转换器全部整合到单个稳压器芯片中的电源管理IC(PMIC)常常是其首选。
一种为特定FPGA寻找优秀供电解决方案的流行方法,是使用许多FPGA供应商均提供的已有电源管理参考设计。这对于优化设计来说是一个很好的入门方式,但此类设计往往需要修改,因为FPGA系统通常需要额外的电压轨和负载,这些也需要供电,且在参考设计上增加一些东西常常也是必要的。还有一件事需要考虑,那就是FPGA的输入电源不是固定的,输入电压在很大程度上取决于实际的逻辑位准,以及FPGA所实现的设计。完成对电源管理参考设计的修改之后,它看起来将与最初的参考设计不同。可能有人会宣称,最好的解决方案是根本不用电源管理参考设计,而是直接将所需的电压轨和电流输入到电源管理选型与优化工具中,例如 ADI 的 LTpowerCAD等。
图1 透过 LTpowerCAD工具选择
合适的DC-DC转换器为FPGA供电。
LTpowerCAD 可用来为各个电压轨提供电源解决方案,还提供一系列参考设计,以让设计人员快速入门,且该工具可以免费下载。一旦选择了电源架构和各个电压转换器,就需要选择合适的被动组件来设计电源。进行这件事时,需要牢记 FPGA 的特殊负载要求,它们分别是:
各项电流需求
电压轨时序控制
电压轨单调上升
快速电源瞬变
电压精准度
FPGA的实际电流消耗在很大程度上取决于使用情况。不同的频率和不同的FPGA内容需要不同的功率,因此,在FPGA系统的设计过程中,典型FPGA设计的最终电源规格必然会发生变化。FPGA制造商提供的功率估算工具有助于计算解决方案所需的功率等级,在构建实际硬件之前,获得这些信息会非常有用。但是,为了利用此类功率估算工具获得有意义的结果,FPGA的设计必须最终确定,或者至少接近最终完成。
在一般的情况下,工程师设计电源时考虑的是最大FPGA电流。如果最终发现实际FPGA设计需要的功率更少,设计人员就会缩减电源。
许多FPGA要求不同电源电压轨以特定顺序上电。核心电压的供应往往需要早于I/O电压的供应,否则一些FPGA会被损坏。为了避免这种情况,电源需要按正确的顺序上电。使用标准DC-DC转换器上的致能接脚,可以轻松实现简单的上电时序控制。然而,组件关断通常也需要时序控制,仅执行致能接脚时序控制,很难取得良好的结果。更好的解决办法是使用具有进阶整合时序控制功能的 PMIC,例如集成四通道低噪声降压稳压器的电源解决方案——ADP5014,图2中以红色表示的特殊电路模块支持调整上电和关断时序。
图2 PMIC整合了对灵活控制上电/关断时序的支持。
图3显示了利用此组件实现的时序控制。透过PMIC上的延迟(DL)接脚可以轻松调整上电和关断时序的时间延迟。
图3 多个FPGA电源电压的启动和关断顺序。
如果使用多个单独的电源,增加时序控制芯片便可实现所需的上电/关断顺序。一个例子是四通道电源排序器 LTC2924,它既能控制DC-DC转换器的致能接脚来打开和关闭电源,也能驱动高阶N信道MOSFET来将FPGA与某个电压轨连接和断开。
图4 电压A单调上升,电压B非单调上升。
电源不喜欢非常大的输出电容,因为在启动期间,开关稳压器的输出电容看来像短路。对此问题有一个解决办法,较长的软启动时间可以让大电容组上的电压稳定地升高,电源不会进入短路限流模式。
图5 很多FPGA的输入电容要求。
一些电源转换器不喜欢过大输出电容的另一个原因是该电容值会成为调节回路的一部分。整合回路补偿的转换器不允许输出电容过大,以防止稳压器的环路不稳定,在高阶回馈电阻上使用前馈电容常常可以影响控制回路,如图6所示。
图6 当没有回路补偿接脚可用时,
利用前馈电容可以调节控制回路。
针对电源的负载瞬变和启动行为,开发工具链(包括LTpowerCAD,尤其是LTspice)非常有帮助。该工具可以达到良好的建模和模拟,从而有效实现FPGA的大输入电容与电源的输出电容的去耦,图6即展示了这一个概念。
虽然负载端(POL)电源的位置往往靠近负载,但在电源和FPGA输入电容之间常常存在一些PCB布线。当电路板上有多个彼此相邻的FPGA输入电容时,离电源最远的那些电容对电源传递函数的影响较小,因为它们之间不仅存在一些电阻,还存在寄生布线电感。这些寄生电感允许FPGA的输入电容大于电源输出电容的最大限值,即使所有电容都连接到电路板上的同一节点也无妨。在LTspice中,可以将寄生布线电感添加到原理图中,并且可以模拟这些影响,当电路建模中包含足够的寄生组件时,仿真结果接近实际结果。
图7 电源输出电容与FPGA输入电容之间的寄生去耦。
为了快速提供大电流,通常选择陶瓷电容。此类电容很适合这种用途,但需要小心选择,使其真实电容值不随直流偏置电压而下降。一些陶瓷电容,尤其是Y5U型,当直流偏置电压接近其最大额定直流电压时,其真实电容值会降低到只有标称值的20%。
ADP5014
输入电压范围:2.75 V至6.0 V
可编程输出电压范围:0.5 V至0.9 × PVINx
低输出噪声:~25 μV rms(VOUT ≤ VREF时)
输出精度:±1.0%(整个温度范围内)
可调开关频率范围:500 kHz至2.5 MHz
功率调节
通道1和通道2:可编程2 A/4 A同步降压稳压器,或单通道8 A输出(并联使用)
通道3和通道4:可编程1 A/2 A同步降压稳压器,或单通道4 A输出(并联使用)
灵活的并行操作
精密使能,0.6 V阈值
用于上电和关断时序的手动或序列模式
可选FPWM或PSM工作模式
精密欠压比较器
频率同步输入或输出
有源输出放电开关
可选通道通过工厂熔断器提供电源良好指示
UVLO、OVP、OCP和TSD保护
40引脚、6 mm × 6 mm LFCSP封装
结温范围:-40°C至+125°C
关于世健 亚太区领先的元器件授权代理商
世健(Excelpoint)是完整解决方案的供应商,为亚洲电子厂商包括原设备生产商(OEM)、原设计生产商(ODM)和电子制造服务提供商(EMS)提供优质的元器件、工程设计及供应链管理服务。
世健是新加坡主板上市公司,拥有超过30年历史。世健中国区总部设于香港,目前在中国拥有十多家分公司和办事处,遍及中国主要大中型城市。凭借专业的研发团队、顶尖的现场应用支持以及丰富的市场经验,世健在中国业内享有领先地位。