附源码-终极串口接收(二)

鱼鹰谈单片机 2021-03-14 00:00

来源:公众号【鱼鹰谈单片机】

作者:鱼鹰Osprey

ID   :emOsprey


前段时间需要写个串口接收程序,一时没找到源码,就想着自己写过一篇文章《终极串口接收方式,极致效率》,看看能不能复制个代码,谁知道原理写的还算清楚,但真要直接复制粘贴使用还是有点麻烦,作为 CV 工程师,这怎么可以,所以才有了今天的后续。

在那篇文章之前,鱼鹰还写过一篇串口相关的万字长文《如何写一个健壮且高效的串口接收程序?》,这篇文章也是介绍了很多设计细节问题,值得一读,但经过又一年的底层开发,鱼鹰又有了新的思考。

所以后续,鱼鹰除了会再写一篇串口DMA发送、接收的程序框架,还会再写一篇可重入 printf DMA打印函数设计方法与源码分享、串口数据解析源码等相关的文章。


因为公众号近期改变了推送规则,如果想及时接收本公众号的文章,可以在阅读后,点个在看,也可直接星标本公众号,这样每次推送的文章可以第一时间出现在您的订阅列表里面。


这份代码主要内容:USART1  +  DMA  +  IDLE 中断 +无锁队列。

开发环境:C99、KEIL、STM32F103

主函数:

int main(void){  USART1_Init(115200); // 开始 DMA 接收数据 fifo_init(&fifo_usart_rx_1, usart_buff_rx, sizeof(usart_buff_rx));

while(1) { uint8_t length = fifo_read_buff(&fifo_usart_rx_1, buff_read, sizeof(buff_read));// 每次最大取 20 字节数据 if(length) {// printf("lengtt = %d", length); // 实际接收的数据长度 } else {// printf("no data rx");// 没有数据 }
if(fifo_usart_rx_1.error) {// printf("fifo error %d", fifo_usart_rx_1.error);// 接收错误 fifo_usart_rx_1.error = 0; } }}
中断处理函数:
void USART1_IRQHandler(void) //串口1中断服务程序{ pfifo_rx_def pfifo = &fifo_usart_rx_1; USART_TypeDef *uartx = USART1; DMA_Channel_TypeDef *dma_ch = DMA1_Channel5;
if((uartx->SR & USART_FLAG_IDLE) != RESET) { (void)uartx->DR; // 清除空闲中断 if(pfifo != 0) { uint16_t curr_counter; curr_counter = dma_ch->CNDTR; // 获取当前接收索引 pfifo->in += ((pfifo->last_cnt - curr_counter) & (pfifo->size - 1)); pfifo->last_cnt = curr_counter; if((pfifo->in - pfifo->out) > pfifo->size) { pfifo->out = pfifo->in; // 清空缓存,注意赋值顺序,pfifo->in = pfifo->out 是错误的 pfifo->error |= FIFO_DMA_ERROR_RX_FULL; } } else { pfifo->error |= FIFO_DMA_ERROR_RX_POINT_NULL; } } else { pfifo->error |= FIFO_DMA_ERROR_RX_NOT_IDLE; }}

无锁队列内容:
#include "string.h"
typedef struct{ uint8_t *buffer; uint32_t in; uint32_t out; uint16_t size; uint16_t error; // 接收错误 uint16_t last_cnt; }fifo_rx_def;
typedef fifo_rx_def *pfifo_rx_def;

#define IS_POWER_OF_2(x) ((x) != 0 && (((x) & ((x) - 1)) == 0))
#define FIFO_DMA_ERROR_RX_NOT_IDLE (0x1 << 0) // 非空闲中断#define FIFO_DMA_ERROR_RX_POINT_NULL (0x1 << 1) // 指针为空#define FIFO_DMA_ERROR_RX_FULL (0x1 << 2) // 非空闲中断
// 不建议使用宏,除非确定没有使用隐患uint32_t min(uint32_t X, uint32_t Y){ return ((X) > (Y) ? (Y) : (X));}

fifo_rx_def fifo_usart_rx_1;
int32_t fifo_init(pfifo_rx_def pfifo, uint8_t *buff, uint32_t size){ assert_param(pfifo != NULL || buff != NULL);
if(!IS_POWER_OF_2(size)) // 必须 2 的幂次方 {
return -1; }
pfifo->in = 0; pfifo->out = 0; pfifo->buffer = buff; pfifo->size = size; // 必须最后设置大小 pfifo->last_cnt = size;
return 0;}
uint32_t fifo_read_buff(pfifo_rx_def pfifo, uint8_t* buffer, uint32_t len){ uint32_t length;
assert_param(pfifo != NULL || pfifo->buffer != NULL || buffer != NULL);
len = min(len, pfifo->in - pfifo->out);
/* first get the data from pfifo->out until the end of the buffer */ length = min(len, pfifo->size - (pfifo->out & (pfifo->size - 1))); memcpy(buffer, pfifo->buffer + (pfifo->out & (pfifo->size - 1)), length);
/* then get the rest (if any) from the beginning of the buffer */ memcpy(buffer + length, pfifo->buffer, len - length);

pfifo->out += len;
return len; }

串口、DMA、中断初始化:

#define USART_BUFF_SIZE_1 128
static uint8_t usart_buff_rx[USART_BUFF_SIZE_1];
// 输入参数:波特率 比如 115200void USART1_Init(u32 bound){ //GPIO端口设置 GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; NVIC_InitTypeDef NVIC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE); //USART1_TX PA.9 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure);
//USART1_RX PA.10 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure);
//Usart1 NVIC 配置 NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3 ; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能 NVIC_Init(&NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器USART1
//USART 初始化设置 USART_InitStructure.USART_BaudRate = bound; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART1, &USART_InitStructure);
USART_ITConfig(USART1, USART_IT_IDLE, ENABLE);//开启空闲中断
DMA_InitTypeDef DMA_InitStructure;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // 使能DMA传输
DMA_DeInit(DMA1_Channel5); // 将DMA的通道1寄存器重设为缺省值
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&USART1->DR; // DMA 外设C基地址 DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)usart_buff_rx; // DMA 内存基地址 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; // 外设作为数据传输的目的地 DMA_InitStructure.DMA_BufferSize = sizeof(usart_buff_rx); // DMA通道的DMA缓存的大小 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // 外设地址寄存器不变 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; // 内存地址寄存器递增 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; // 数据宽度为8位 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; // 数据宽度为8位 DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; // 工作在循环缓存模式 DMA_InitStructure.DMA_Priority = DMA_Priority_Medium; // DMA通道 x拥有中优先级 DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; // DMA通道x没有设置为内存到内存传输
DMA_Init(DMA1_Channel5, &DMA_InitStructure); //根据DMA_InitStruct中指定的参数初始化DMA的通道USART1_Tx_DMA_Channel所标识的寄存器 DMA_Cmd(DMA1_Channel5, ENABLE); //使能DMA
USART_DMACmd(USART1, USART_DMAReq_Rx,ENABLE); //使能 USART1 接收请求
USART_Cmd(USART1, ENABLE); //使能串口 }

以上就是终极串口接收方式的具体实现,如果对无所队列不是很熟悉,建议看鱼鹰的《【深度长文】还是没忍住,聊聊神奇的无锁队列吧!》,目前因为只涉及到接收,所以没有其他源码提供,免得分心。


在这里再唠嗑几句:

1、串口初始化函数一旦执行完成,串口就开始使用 DMA接收数据,空闲中断产生时,用户才能在后续得到 DMA缓存接收的数据。

2、因为 DMA数据的更新由串口空闲中断决定,所以一旦一帧数据很长(在这里为大于 128,或者一帧数据大于剩余缓存空间),那么程序会发现这个错误,并设置标志位(有些错误可能无法发现),所以这里的缓存大小设置比较关键,必须大于一帧缓存,最好两帧以上,并且是 2 的幂次方。

3、如果内存有限制,无法开更大缓存,那么可以开启 DMA的半传输中断,这样也可以及时取走 DMA缓存的数据(或者使用定时更新的方式)。

4、用户缓存 buff_read 可以随意设置,没有限制,但为了节省内存,一般小于等于 DMA 的接收缓存 usart_buff_rx。另外在该例子中,buff_read 并没有清除数据,可以按需清除。

5、fifo_read_buff 返回值为实际接收到的数据长度,如果等于 0,代表没有接收到任何数据,并且读取完之后,会自动清除 DMA缓存的数据,用户不需要清除它(实际上,缓存的数据还在,只是用户读取不了,并最终会被后面接收的数据所覆盖)

6、串口中断一般可以设置为最低优先级,因为是 DMA后台自动接收的,所以中断优先级最低并不会丢失数据(前提是缓存足够大)。

7、如果使用串口不为空(USART_IT_RXNE)中断,一般接收会出现 ORE错误,此时如果不清除该错误会导致死机现象,但一般 DMA总是能及时接收数据,应该不会产生该错误,但为了发现这种情况,鱼鹰也设置了错误标志。至于为什么要做这些检查,请看鱼鹰的笔记《许久以后,你会感谢自己写的异常处理代码》

总结一下,终极串口接收的关键就是 DMA循环接收,和接收索引的更新。

其他的和网络上的 DMA 串口接收没什么区别。
当然,还有最重要的一点,你看这些代码会比较舒服,最后皮一下,哈哈。
感谢道友看到最后,咱们下期再见。


鱼鹰谈单片机 面向软件开发进阶读者,分享包括但不限于 C 语言、KEIL、STM32、51 等知识!
评论
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 128浏览
  • 全球智能电视时代来临这年头若是消费者想随意地从各个通路中选购电视时,不难发现目前市场上的产品都已是具有智能联网功能的智能电视了,可以宣告智能电视的普及时代已到临!Google从2021年开始大力推广Google TV(即原Android TV的升级版),其他各大品牌商也都跟进推出搭载Google TV操作系统的机种,除了Google TV外,LG、Samsung、Panasonic等大厂牌也开发出自家的智能电视平台,可以看出各家业者都一致地看好这块大饼。智能电视的Wi-Fi连线怎么消失了?智能电
    百佳泰测试实验室 2024-12-12 17:33 104浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 99浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-12 10:13 65浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 89浏览
  • 应用环境与极具挑战性的测试需求在服务器制造领域里,系统整合测试(System Integration Test;SIT)是确保产品质量和性能的关键步骤。随着服务器系统的复杂性不断提升,包括:多种硬件组件、操作系统、虚拟化平台以及各种应用程序和服务的整合,服务器制造商面临着更有挑战性的测试需求。这些挑战主要体现在以下五个方面:1. 硬件和软件的高度整合:现代服务器通常包括多个处理器、内存模块、储存设备和网络接口。这些硬件组件必须与操作系统及应用软件无缝整合。SIT测试可以帮助制造商确保这些不同组件
    百佳泰测试实验室 2024-12-12 17:45 101浏览
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 100浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 125浏览
  • 本文介绍瑞芯微RK3588主板/开发板Android12系统下,APK签名文件生成方法。触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,该开发板是核心板加底板设计,音视频接口、通信接口等各类接口一应俱全,可帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。工具准备下载Keytool-ImportKeyPair工具在源码:build/target/product/security/系统初始签名文件目录中,将以下三个文件拷贝出来:platform.pem;platform.
    Industio_触觉智能 2024-12-12 10:27 102浏览
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 109浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦