当ftrace用于用户空间

Linux阅码场 2021-03-06 00:00

gcc4.6 添加了一个编译选项 -mfentry, 当程序编译之后,程序中的所有函数,除了notrace属性

#define notrace __attribute__((no_instrument_function))

的函数头上都会添加上call __fentry__,占用5个字节,__fentry__函数在程序中可以自定义, 比如在Linux kernel中被定义为 retq直接返回。

SYM_FUNC_START(__fentry__)
        retq
SYM_FUNC_END(__fentry__)

 定义成retq的意思是我不想直接使用__fentry__, 其实现也是在内核启动的时候把__fentry__换成了nopl, 然后在需要trace内核函数时,再替换成对应的trampoline(中文: 蹦床).


讲解ftrace(function trace)在用户空间的应用。

以下代码来自此git工程:

https://github.com/x-lugoo/ftracer.git

ftracer.c中对__fentry__函数进行了自定义:

ftracer.c 

asm(
"       .globl __fentry__\n"
"__fentry__:\n"
/* save arguments */
"       push %rax\n"
"       push %rdi\n"
"       push %rsi\n"
"       push %rdx\n"
"       push %rcx\n"
"       push %r8\n"
"       push %r9\n"
"       movq %rsp,%rdi\n"
"       call ftracer\n"
"       pop %r9\n"
"       pop %r8\n"
"       pop %rcx\n"
"       pop %rdx\n"
"       pop %rsi\n"
"       pop %rdi\n"
"       pop %rax\n"
"       ret\n");


上面__fentry__函数的实现把所有传参寄存器(x86_64架构)全部压栈,然后把sp指针传给ftracer()的第一个参数.

__attribute__((used)) void ftracer(struct frame *fr)
{
        if (!tenabled)
                return;
        struct trace *t = &tbuf[tcur++];
        if (tcur >= TSIZE)
                tcur = 0;
        t->tstamp = __builtin_ia32_rdtsc();
        t->src = fr->caller;
        t->dst = fr->callee;
        t->arg1 = fr->rdi;
        t->arg2 = fr->rsi;
        t->arg3 = fr->rdx;
}
struct frame {
        uint64_t r9; 
        uint64_t r8; 
        uint64_t rcx;
        uint64_t rdx;
        uint64_t rsi;
        uint64_t rdi;
      
  uint64_t rax;
        uint64_t
 callee;
        uint64_t
 caller;
};



其中callee是被调用函数地址,caller是调用函数地址 ,比如f1()调用f2(), f2函数头上调用了__fentry__,  那么__fentry__ 就可以从frame结构中的rax变量地址之后找到callee和caller

f1() {
  call f2

f2() {
  call __fentry__


ftracer()的实现把函数调用参数被调用函数调用函数函数执行时间戳都存在tbuf


使用一个测试程序验证ftrace功能:

test.c 

#include "ftracer.h"

#define mb() asm volatile ("" ::: "memory")

void f3(int a, int b, int c)
{
        mb();
}
void f2(int a, int b, int c)
{
        f3(456); 
}
void f1(int a, int b, int c)
{
        f2(789); 
}
main()
{
        ftrace_dump_at_exit(0);
        ftrace_enable();
        f1(123); 
}


函数调用关系:main->f1->f2->f3


编译:

gcc -c ftracer.cgcc -pg -mfentry ftracer.o test.c -o test


执行./test的时候调用ftrace_dump(), 打印出tbuf中的数据,

void ftrace_dump(unsigned max)
                t = &tbuf[i];
...
                printf("%llx %llx->%llx %llx %llx %llx\n",
                                t->tstamp,
                                t->src, t->dst,
                                t->arg1, t->arg2, t->arg3);


tbuf中包含函数调用关系和函数执行时时间戳:

./test
2b4fcfe84137ab 4008d1->400893 4 5 6 (f2->f3)
2b4fcfe8413763 
4008fe->4008ac 7 8 9 (f1->f2)
2b4fcfe84136ee
 40092d->4008d9 1 2 3 (main->f1)


以上函数调用关系对应各个函数代码段:

   function f2:
   0x00000000004008a7 <+0>:    callq  0x400657 <__fentry__>
 
  0x00000000004008ac <+5>:    push   %rbp
   0x00000000004008ad <+6>:    mov    %rsp,%rbp
...
   0x00000000004008cc <+37>:    callq  0x40088e <f3>
   0x00000000004008d1 <+42>:    nop
   0x00000000004008d2 <+43>:    leaveq 
   0x00000000004008d3 <+44>:    retq   


   function f3:
   0x000000000040088e <+0>:    callq  0x400657 <__fentry__>
  
 0x0000000000400893 <+5>:    push   %rbp
...
   0x00000000004008a6 <+24>:    retq   


   function f1
   0x00000000004008d4 <+0>:    callq  0x400657 <__fentry__>
 
  0x00000000004008d9 <+5>:    push   %rbp
...
   0x00000000004008f4 <+32>:    mov    $0x7,%edi
   0x00000000004008f9 <+37>:    callq  0x4008a7 <f2>
   
0x00000000004008fe <+42>:    nop
   0x00000000004008ff <+43>:    leaveq 
   0x0000000000400900 <+44>:    retq   


   function main
   0x0000000000400901 <+0>:    callq  0x400657 <__fentry__>
...
   0x0000000000400928 <+39>:    callq  0x4008d4 <f1>
  
 0x000000000040092d <+44>:    mov    $0x0,%eax
   0x0000000000400932 <+49>:    pop    %rbp
   0x0000000000400933 <+50>:    retq   


总结:以上分析了ftracer用于用户空间,可以跟踪函数调用参数和函数执行时间戳.


小编最新一直被催更微信公众号文章,我最近一直在设计优化tracer视频课程,内容已经迭代了四五次了,希望到时候能通俗易懂、图文并茂地讲解Linux内核中function tracer /function graph/ kprobe/kretprobe/trace event 的最底层原理和应用,预期三月下旬发布.

掌握之后将对Linux kernel的研究学习方式和debug方式带来很大的帮助,big picture 如下图所示:

本公众号持续分享实际工作和学习中关于linux内核的知识总结,偶尔也会出一些视频分享,前不久根据Linux实际工程中的底层需求,设计了一个视频《Linux常见锁和lockup检测机制》发布在了阅码场平台。点击左下角阅读原文可以一键报名和试看。


Linux阅码场 专业的Linux技术社区和Linux操作系统学习平台,内容涉及Linux内核,Linux内存管理,Linux进程管理,Linux文件系统和IO,Linux性能调优,Linux设备驱动以及Linux虚拟化和云计算等各方各面.
评论 (0)
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 192浏览
  • 一、智能家居的痛点与创新机遇随着城市化进程加速,现代家庭正面临两大核心挑战:情感陪伴缺失:超60%的双职工家庭存在“亲子陪伴真空期”,儿童独自居家场景增加;操作复杂度攀升:智能设备功能迭代导致用户学习成本陡增,超40%用户因操作困难放弃高阶功能。而WTR096-16S录音语音芯片方案,通过“语音交互+智能录音”双核驱动,不仅解决设备易用性问题,更构建起家庭成员间的全天候情感纽带。二、WTR096-16S方案的核心技术突破1. 高保真语音交互系统动态情绪语音库:支持8种语气模板(温柔提醒/紧急告警
    广州唯创电子 2025-04-28 09:24 185浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 165浏览
  • 晶振在使用过程中可能会受到污染,导致性能下降。可是污染物是怎么进入晶振内部的?如何检测晶振内部污染物?我可不可以使用超声波清洗?今天KOAN凯擎小妹将逐一解答。1. 污染物来源a. 制造过程:生产环境不洁净或封装密封不严,可能导致灰尘和杂质进入晶振。b. 使用环境:高湿度、温度变化、化学物质和机械应力可能导致污染物渗入。c. 储存不当:不良的储存环境和不合适的包装材料可能引发化学物质迁移。建议储存湿度维持相对湿度在30%至75%的范围内,有助于避免湿度对晶振的不利影响。避免雨淋或阳光直射。d.
    koan-xtal 2025-04-28 06:11 139浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 136浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 154浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 180浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 152浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 172浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 205浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 159浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 121浏览
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 104浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 217浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦