时隔一年,再聊Open RAN

鲜枣课堂 2021-03-04 00:00

上周参加MWC,小枣君最大的感受,就是扑面而来的网络开放化、虚拟化、智能化浪潮。


从接入网到核心网,几乎所有的传统通信设备都有了云化解决方案。“白盒”、“云化”、“轻量化……类似的字眼在展会上几乎随处可见。仿佛一夜之间,所有的企业都成为了基站设备商、核心网设备商,整个行业进入了“人人皆Vendor(设备厂家)”的时代。



对于传统通信设备商来说,这无疑是雪上加霜。原本就竞争激烈的市场,又涌入了这么多的新对手,将会导致利润进一步削薄,日子更加难过。


然而,对于运营商,却是喜闻乐见。他们盼望已久的网络开放、解耦,终于到了开花结果的阶段。越来越多的Vendor,意味着自己可以摆脱那几家设备商的“绑架”,能够更灵活地部署网络。运营商的网络综合成本(TCO,Total Cost of Ownership),也有望进一步降低。


说到网络开放,就不得不提到Open RAN。


一直以来,RAN(无线接入网)的开放和解耦,都是运营商的关注重点。在运营商看来,RAN的云化,比核心网更加意义重大。


RAN的开销,占了运营商TCO的60%以上。


在一年多以前,小枣君给大家介绍过O-RAN(链接)。后来,我也一直在密切关注Open RAN的发展和变化。


今天,基于从MWC上获取的最新信息,我想从技术和架构的角度,再和大家聊聊这个话题。



在这次MWC上,有一个概念被反复提及,而这个概念和Open RAN的架构有非常密切的关系,那就是——RIC


RIC是Open RAN架构体系的关键。看懂了RIC,就看懂了Open RAN的架构。


早在2018年O-RAN联盟创立的时候,为了制定开放的RAN规范标准,成立了9个小组(Work Group,WG),分别研究对应的接口和技术。


O-RAN工作组


其中WG2和WG3,分别负责的是非实时RIC和近实时RIC。


RIC到底是什么?RAN Intelligent Controller,也就是无线接入网智能控制器


在继续介绍它之前,我们先看一下O-RAN的整体架构。



上面这张图,是5G O-RAN相比4G的主要架构变化。从图中可以看出,4G LTE RAN的主要组件BBU和RRH,变成了5G O-RAN里的O-CU、O-DU、O-RU。


O-CU:负责协议的分组数据汇聚协议(PDCP)层。

O-DU:负责所有基带处理、调度、无线电链路控制(RLC)、媒体访问控制(MAC)和物理层(PHY)的上部。

O-RU:负责底层物理层处理的组件,包括无线电发送器和接收器的模拟组件。


O-RAN使用开放协议的可互操作硬件,取代了传统的封闭接口和专有硬件及协议,使得RAN架构变成更加灵活、开放、解耦。


我们通常所说的RAN虚拟化,其实主要是指O-CU和O-DU的虚拟化。也就是说,它们是可以搭建在x86服务器平台上的。O-RU是射频收发,这块现在讲的是软件无线电、白盒无线电,还没有办法虚拟化。


我们深入看一下O-RAN架构的内部,如下图所示:


(图片来自O-RAN联盟)


这个图就有点复杂了,因为它列出了3GPP的标准接口(X2、Xn、NG、E1、F1等),还有我们刚才所说的RIC以及对应新增接口。


我还找到一张图,O-RAN和3GPP RAN的架构对比,看得就更加清楚了:


(图片来自爱立信)


很明显,在服务管理和编排(Service Management and Orchestration,SMO,类似NFV里面的MANO)中,有一个非实时RIC(Non-Real-Time RIC)。而在CU中,多了一个近实时RIC(Near-Real-Time RIC)


非实时RIC是一个功能,并非物理硬件。它负责RAN中所有网络元素的配置管理、设备管理、故障管理、性能管理和生命周期管理。非实时RIC,负责处理时延要求大于1秒的业务,比如数据分析、AI模型训练等。


近实时RIC,也就是接近实时RIC。它负责处理时延要求小于1秒(50ms-200ms)的业务,比如无线资源管理、切换决策、双连接控制、负载均衡等。


非实时RIC通过从RAN和应用服务器收集全域相关数据,进行数据分析和AI训练,并将推理和策略通过A1接口下发、部署于近实时RIC。


近实时RIC负责收集和分析RAN的即时信息,结合非实时RIC提供的额外或全局信息,并通过非实时RIC下发的推理模型和策略,实时监控和预测网络和用户行为变化,并根据策略(比如QoE目标)实时对RAN参数进行调整,包括调整资源分配、优先级、切换等。


近实时RIC中包括了很多xAPP。顾名思义,xAPP就是由第三方独立部署的APP(应用),它将AI推理模型和策略部署于其中,并且不同的xAPP与不同的RAN功能关联,从而使得RAN的功能组件具备灵活的可编程性和可扩展性。



在MWC上,佰才邦、英特尔、中国移动就共同演示了基于RIC的“5G+AI”应用场景案例,如下图所示:



案例中,集成了人工智能的非实时RIC,通过学习推理,把算法推送到近实时RIC平台。近实时RIC通过E2接口,控制RAN的功能组件,从而对RAN进行精确、合理的调度和控制。准确来说,控制的目标就是切换(HO)门限,从而让UE(用户终端)进行更合理的切换,大幅降低掉话率,提升用户的网络体验


这个案例,充满诠释了什么是5G和AI的结合。


可想而知,RIC不仅是Open RAN架构顺利实现全面解耦开放的关键,也是AI赋能5G接入网的关键。

作为最早加入O-RAN的传统设备商,诺基亚也在MWC上展示了自己对RIC的运用:



从图中可以看出,RIC不仅可以用于改善用户网络体验,还可以监测网络运行异常,甚至帮助进行智能节能。



开放解耦是O-RAN和Open RAN的首要目标,但不是唯一目标。


随着5G的不断建设,运营商网络变得空前复杂和庞大。纯人工运维的方式,肯定是死路一条。运营商的唯一出路,就是向AI人工智能求助。


所以说,不管是3GPP还是O-RAN,都会将人工智能与网络的结合放在首要位置,认真研究如何利用AI赋能网络建设和运维。这几年频繁提出的“自动驾驶网络”(这里的自动驾驶和车联网无关,是指网络自己“驾驶(管理)”自己),其实就是这样,将AI嵌入传统通信网络,管理资源分配,识别外部环境变化,建立算法模型,生成策略结果,自动对参数进行调整,从而降低人工干预,缩减成本。


吹了半天,我们还是要先回到现实。现实是什么?Open RAN架构目前在现网中的占比,远不到10%。也就是说,不要高兴得太早。


Open RAN本身也不是完美无缺的。爱立信就曾提出,Open RAN引入了RIC控制器,新增了A1、E2、O1、O2等接口,使得架构更加复杂,可能会增加安全风险。


华为不加入O-RAN联盟,则是认为Open RAN架构的能耗表现并不理想。


之前搞Open RAN最风生水起的日本乐天移动(Rakuten Mobile),近期也传出了不少的负面新闻。



Open RAN到底何去何从,我们还是静观其变吧!



—— The End ——


参考文献:

1、《Why 5G O-RANs need compliance and interoperability testing》,5G Technology World;

2、《5G Open RAN到底是什么?》,SDNLAB;

3、《Security considerations of Open RAN》,爱立信;

4、《O-RAN存在的安全风险》,网优雇佣军;

5、《什么是Open RAN标准?》,通信百科。

鲜枣课堂 学通信,学5G,就上鲜枣课堂!
评论 (0)
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 154浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 207浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 202浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 181浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 237浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 211浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 284浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 211浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 176浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 211浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦