阻抗是什么?阻抗基本知识和使用技巧

原创 Keysight射频测试资料分 2025-04-22 06:21

阻抗是什么?

  • 阻抗是元器件或电路对周期的交流信号的总的反作用。

  • AC交流测试信号 (幅度和频率)。

  • 阻抗常用Z表示,是一个复数,实部为电阻,虚部称为电抗


阻抗是什么意思?

阻抗是评测电路、元件以及制作元件材料的重要参数。

推荐阅读:矢量网络分析的基本原理

阻抗计算公式

首先阻抗是一个矢量。

通常,阻抗是指器件或电路对流经它的给定频率的交流电流的抵抗能力。它用矢量平面上的复数表示。一个阻抗矢量包括实部(电阻R)和虚部(电抗X)。

如图1所示,阻抗在直角坐标系中用Z=R+jX表示。那么在极坐标系中,阻抗可以用幅度和相角表示。直角坐标系中的实部和虚部可以通过数学换算成极坐标系中的幅度和相位。

其次,要记住阻抗的单位是欧姆。另外,要思考一下我们所熟知的电阻(R)、电感(L)和电容(C)分别对应由于复阻抗平面中的位置。其中电容在电路中对交流电所起的阻碍作用称为容抗,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电所引起的阻碍作用总称为电抗。

阻抗的公式


需要了解的阻抗基本知识

测量阻抗有几种不同的技术和方法,应该根据测量的频率范围、要测量的阻抗参数以及想要显示的测量结果来选择一个具体的测试技术。

自动平衡电桥技术在从毫欧姆到兆欧姆很宽的阻抗测量范围内有极高的测量精度,与之相适应的测量频率范围可以从几 Hz 到 110 MHz。

IV 和 RF-IV 技术在从毫欧姆到兆欧姆的阻抗测量范围内的测量精度同样很好,与之相适应测量频率范围可以从 40 Hz 到 3 GHz 左右。

传输 / 反射技术在非常宽的频率范围,从 5 Hz 到 110 GHz 以上,测量 50 欧姆或 75 欧姆附近的阻抗值时,具有非常高的测量精度。

LCR 表和阻抗分析仪的主要区别之一是它们对测量结果的显示方式。 LCR 表用数字显示测量结果,而阻抗分析仪既可以用数字也可以用图形显示测量结果。

LCR 表或阻抗分析仪所采用的测量技术和仪表的类型无关,根据测量的频率范围,它们可以采用 RF-IV、IV 或自动平衡电桥技术。

用户会出于各种原因而需要测量器件的阻抗。一个典型的情况是工程师们需要对用在其所设计的电路中的器件的阻抗特性进行测量,因为通常情况下这些器件的供应商只给出了器件阻抗值的额定数据。

在某种程度上,在决定产品的最终设计性能,甚至决定制成品的生产时都会与产品所用器件的阻抗值有关,最终产品的性能和质量会受到器件的测量精度以及对器件的测量是否够全面的影响。

       图 0-1 各种测量方法和相应的测量精度范围

提示 1. 阻抗参数的确定和选择

阻抗是表征电子器件特性的参数之一。阻抗 (Z) 的定义是器件在给定的频率下对交流电流 (AC) 所起的阻碍作用。

阻抗通常用复数量 ( 矢量 ) 的形式来表示,可以把它画在极坐标上。坐标的第一和第二象限分别对应正的电感值和正的电容值 ; 第三和第四象限则代表负的电阻值。阻抗矢量由实部 ( 电阻 — R) 和虚部 ( 电抗 — X) 组成。

图 1-1 所示是阻抗矢量的值落在极坐标系统中第一象限的情况。

       

图 1-1. 阻抗的矢量表示

电容 (C) 和电感 (L) 的值可从电阻(R) 和电抗 (X) 值中推导出来。电抗的两种形式分别是感抗 (X L) 和容抗(X C)。

品质因数 (Q) 和损耗因数 (D) 也可从电阻和电抗的值中推导出来,这两个参数是表示电抗纯度的。当 Q 值偏大或 D 值偏小时,电路的质量更高。Q 的定义是器件所储存的能量与其做消耗的能量的比值。D 是 Q 的倒数。D 还等于“tan δ”,其中 δ 是介质损耗角 (δ 是相位角 θ 的余角 )。D 和 Q 均属于无量纲的量。

图 1-2 显示的是阻抗与可以从阻抗值中所推导出的参数的关系。

图 1-2. 电容器和电感器参数

提示 2. 选择正确的测量条件

器件制造商给出的器件阻抗值所代表的是在规定的测量条件下器件所能达到的性能,以及在生产这些器件时所允许出现的器件性能的偏差。如果在设计电路时需要很精确地知道所使用器件的性能的话,就有必要专门对器件进行测量来验证其实际值与标称值之间的偏差,或在不同于制造商测试条件的实际工作条件下测量器件的阻抗参数。

由于寄生电感、电容和电阻的存在,所有器件的特性会随着测量频率的变化而变化的现象是非常常见的。

图 2-1 显示的是一个常用的电容器在理想情况下其阻抗随频率变化的特性和实际上有寄生参数存在时其阻抗随频率变化的特性之间的差别。


       

图 2-1. 电容器的频率特征

器件阻抗的测量结果还会受到在测量时所选择的测量信号的大小的影响,图 2-2 显示的是阻抗测量结果随着交流测量信号的大小而变化的情况 :

● 电容值 ( 或材料的介电常数,即K值 ) 的测量结果会依赖于交流测量信号电压值的大小。

● 电感值 ( 或材料的磁滞特性 ) 的测量结果会依赖于交流测量信号电流值的大小。

如图 3 和其中的公式所示,在测量时实际施加在被测器件两侧的交流电压 VDUT 是和它自身的阻抗、信号源的内阻以及信号源的输出电压有关的。

使用仪表的自动电平控制 (ALC)功能可使被测器件 (DUT) 两侧的电压保持在一个恒定的值上。如果仪表内部没有 ALC 功能但是有监测信号大小的功能,可以利用这个功能给这种仪表编写一个相当于 ALC 功能的控制程序来保证被测器件两端上的电压稳定。

通过控制测量积分时间 ( 相当于数据采集时间 ) 可以去除测量中不需要的信号的影响。利用平均值功能可以降低测量结果中的随机噪声。延长积分时间或增加平均计算的次数可以提高测量精度,但也会降低测量速度。在仪表的操作手册中对这部分内容都有详细的解释。

其它有可能影响测量结果的物理和电气因素还包括直流偏置、温度、湿度、磁场强度、光强度、振动和时间等。

       

图 2-2. 测量结果对测量信号大小的依赖性


图 2-3. 实际施加到被测器件上的信号和保证信号稳定的原理

提示 3.选择适当的仪器显示参数

现在有很多阻抗测量仪器都能够测量阻抗矢量的实部和虚部,然后再把它们转换为其它所需要的参数。

如果一个测量结果显示为阻抗(Z) 和相位 (θ),那么被测器件的主要参数 (R、C、L) 和其它所有寄生参数所表现出来的综合特性就体现在 |Z| 和 θ 的数值的大小上。

如果要想显示一个被测器件除阻抗和相角以外的其它参数,可以使用它的二元模型等效电路,如图 3-1 所示。在区分这些基于串联或并联电路模式的二元模型时,我们用脚注“p” 代表并联模型,用“s”代表串联模型,例如 Rp、Rs、Cp、Cs、Lp 或 Ls。

在现实世界中没有器件是纯粹的的电阻、纯粹的电容、纯粹的电感。任何常用的器件通常都会有一些寄生参数 ( 例如由器件的引脚、材料等引起的寄生电阻、寄生电感和寄生电容 ) 存在,表现器件主要特性的部分和寄生参数部分结合在一起会使一个简单的器件在实际工作中表现得就像一个复杂的电路一样。

近年来新推出的阻抗分析仪都带有等效电路分析的高级功能,可以用三元或四元电路模型的形式对测量结果进行进一步的分析,如图 3-2 所示。使用这种等效电路分析功能可对器件更为复杂的寄生效应进行全面分析。


图 3-1. 测量结果的等效电路模型

图 3-2. 等效电路分析功能

提示 4.测量技术具有局限性

在产品设计和生产制造的测量中,我们经常被问到的问题恐怕就是: “测量结果的精度有多高 ?”

仪器的测量精度实际上取决于被测器件的阻抗值和所采用的测量技术,如图 0-1 所示。

在确定测量结果的精度时,需要把测量到的被测器件的阻抗值和所使用仪表在所适用的测量条件下的精度进行比较才可以知道。

图 4-1 显示了在测量频率为 1 MHz 时,1 nF 电容器的阻抗值为 159 Ω。

图 4-1. 电容器的阻抗值和所选择的测量频率有关

仪表关于 D 值和 Q 值的测量精度的指标通常不同于仪表关于其它阻抗参数测量精度的技术指标。

对于低损耗 (D 值很低,Q 值很高 ) 器件,R 值相对于 X 值而言是非常小的。R 值的细小变化将会引起 Q 值的很大变化,如图 4-2 所示。

图 4-2. Q 值测量误差的示意图

如果测量结果的误差跟所测到得的 R 的值相近似的话,就会导致 D 或 Q 值的测量结果是负数的现象。

需要时刻注意的是,测量结果的误差包括仪表自身的测量误差和测量夹具引起的误差。

提示 5.进行校准

进行校准的目的是给仪表定义一个能够保证测量精度的基准面,如图 5-1 所示。通常都是在仪表的测量端口上进行校准,在测量时用校准数据对原始数据进行修正。

是德科技 Keysight Technologies 采用自动平衡电桥技术的仪表在出厂时或是在维修中心都做过基础的校准,可以在一定时期内,不论在测量中对仪表进行何种设置,测量结果都可以达到仪表指标规定的测量精度,操作人员使用这种仪表时是不需要进行校准操作的。

对不采用自动平衡电桥技术的仪表而言,在仪表初始化和设置好测量条件之后,使用一套校准件对仪表进行基础校准是必须的。在使用校准件对这类仪表进行校准时,这个提示所提供的信息是很有用的。

一些测量仪表还提供固定校准模式和用户校准模式供使用者选择。固定校准模式是在预先设定 ( 固定 )的频率上对校准件进行测量得到校准数据。在固定校准频点之间,校准数据可以通过内插法计算出来。

固定校准模式在固定校准频率之间的频点上的内插数据有时会存在较大的误差,当测量频率较高时这些内插校准数据的误差可能会非常大。

用户校准模式是在与实际测量中所选择使用的频率完全一样的频点上对校准件进行测量得到教准数据,对于一些具体的测量而言,用户校准模式不会产生校准数据的内插误差。

特别需要注意的是,用户校准模式得到的校准数据仅对测量条件和校准条件 ( 指仪表的状态 ) 完全一样的情况有效。

图 5-1. 校准面

提示 6.进行补偿

补偿不同于校准,补偿对提高测量精度的效果取决于仪器的校准精度,因次必须在校准完成之后再执行补偿的操作。

如果可以把被测器件直接连在校准面上进行测量,那么仪表的测量结果是能够达到指标所规定的精度要求的。但是,通常都会在校准面和被测器件之间连接一个测试夹具或适配器,因而必须对这种中间部件的残留阻抗进行补偿才可以得到精确的测量结果。

由测试夹具或适配器引起的测量误差可能会非常大,而总的测量精度是由仪器的精度和被测器件与校准面之间的误差源组成的。

验证补偿的效果是否能使随后的测量正常进行是非常重要的。一般而言,在补偿时,开路条件下的补偿测量器件的阻抗值应当至少是被测器件阻抗值的 100 倍以上,而短路条件下的阻抗值应当低于被测器件阻抗值的 1/100。

开路补偿可降低或消除杂散电容,而短路补偿可降低或消除测量夹具引起的能够导致误差增大的残留电阻和电感。

在进行开路或短路补偿测量时,应该使补偿器件两个引脚 ( 即所谓 UNKNOWN 引脚 ) 之间的距离与实际测量时被测器件引脚之间的距离一样,这样可以保证补偿测量和实际测量所碰到的寄生阻抗是一致的。

当测量端口被扩展到是德科技提供的标准夹具距离之外、或者用户使用自己设计的测量夹具、或者在测量系统中还使用了扫描仪时 — 这些情况都涉及到在测量中又引入了额外的无源器件或电路 ( 例如巴仑、衰减器、滤波器等 ),那么在做补偿时,

除了要做开路和短路补偿之外,还要做负载补偿。进行负载补偿所用到的器件的阻抗值一定是已知的而且要精确,并且还应当选择与被测器件的阻抗 ( 在全部的测试条件下 )

和尺寸类似的器件做负载补偿器件。可把性能很稳定的电阻器或电容器当成负载补偿测量器件使用。

在选择补偿器件时一种比较实际的做法是先用一个标准夹具,在进行完开路和短路补偿之后再去测量准备当补偿负载用的器件,用这种方法来确定负载补偿器件的阻抗值,然后可以把这个阻抗值输入给仪表作为补偿测量标准件的值。

图 6-1. 开路 / 短路补偿

提示 7.消除相位偏移和端口扩展的误差

通过电缆长度校正、端口扩展或电延迟,可将校准面扩展至测量电缆末端或夹具表面,这些种校正可降低或消除测量电路中的相移误差

当需要把仪表的测量端口延伸使其远离校准面时,如图 7-1 所示,延长电缆的电气特征会影响总的测量性能。以下这些办法可以降低这些影响 :

● 尽量使用短的电缆来做测量端口的延伸。

● 使用高度屏蔽的同轴电缆,以阻隔外部噪声产生的影响。

● 尽量使用损耗非常小的同轴电缆,因为在扩展测量端口的操作中是假设不存在电缆损耗的,因此损耗最小的电缆可以避免测量精度的劣化。

开路 / 短路补偿无法减少由测试夹具引起的相移误差。

在测量频率达到射频范围时,应当在延长电缆的末端进行校准。如果在延长电缆的末端不能连接校准件,那么当延长电缆比较短而且特性很好时,可以用端口延伸来代替校准。

在使用自动平衡电桥仪表的情况下,如果测量电缆或延伸电缆是非标准的 ( 不是由安捷伦提供的 ),那么应该电缆或夹具的末端进行开路 / 短路 / 负载补偿。安捷伦自动平衡电桥仪表所使用的端口延长标准电缆 (1、2 或 4 米 ) 使用电缆长度补偿数据进行误差校正,通常在使用时应该把这些标准延长电缆末端的屏蔽层连接到一起。

任何形式的端口扩展都有局限性,它们都会因为测量电路的损耗和 / 或相位偏移而引起测量误差,在进行端口延伸之前必须要对这种操作的局限性有清楚的了解。

图 7-1. 测量端口扩展

提示 8. 夹具和连接器维护

高质量的电气连接能够确保进行精密的测量。每一次把被测器件与仪表或测量电缆、夹具进行连接时,接合面的特征都会随着连接的质量而有所不同,接合面的阻抗失配会影响测试信号的传播。

应当经常留意测试端口的接合表面、适配器、校准标准件、夹具连接器和测试夹具等的质量和状态。连接的质量取决于以下因素 :

● 连接的组成部分
● 采用的技术
● 经常进行高质量维护
● 保证清洁度
● 按照标准要求保存仪表和部件

夹具和连接器连接的部分 - 俗话说“一环薄弱,全局必垮”。测量系统也是如此。如果测试系统中使用了低质量的电缆、适配器或夹具,那么系统的整体质量都会降到最低水平。

采用的技术 - 通过使用力矩扳手和一些常识,可确保在进行重复连接时不出现器件损坏。器件损坏包括配合表面的刮痕和变形。

经常进行高质量维护 - 多数测量部件接合表面的部分都是可以替换的,把已经多次使用而性能变差的部分换掉。有的部件接合表面的部分是不可以替换或修复的,那么应该定期用新的部件去替换旧的部件。

保证清洁度 - 使用无腐蚀性 / 无损溶剂 ( 例如去离子水和纯异丙醇 ) 和无尘布擦拭接合表面可以保证它们的阻抗不受油迹或其它杂质的影响。请注意,一些塑料在使用异丙醇时会发生性质的该变。

按照标准要求保存仪表和部件 - 如果仪器的包装不提供附件袋,那么应当使用有盖的塑料盒和塑料封套来保护所有未在使用状态下的接合表面。

是德科技 Keysight Technologies 提供极为广泛的阻抗测量设备,足以满足您的应用需求。

推荐阅读:矢量网络分析的基本原理

是德科技 http://www.keysight.com.cn


评论 (0)
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 126浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 168浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 167浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 130浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 196浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 139浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 151浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 134浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 160浏览
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 100浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 149浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 118浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦