【PCB Thinking】为什么RF射频的阻抗匹配50欧姆

电子芯期天 2021-02-08 00:00

为什么很多射频系统或者部件中,很多时候都是用50欧姆的阻抗(有时候这个值甚至就是PCB板的缺省值) ,为什么不是60或者是70欧姆呢?这个数值是怎么确定下来的,背后有什么意义?本文为您打开其中的奥秘。


0 1


我们知道射频的传输需要天线和同轴电缆,射频信号的传输我们总是希望尽可能传输更远的距离,为了传输更远的距离,我们往往希望用很大的功率去发射信号便于覆盖更大的通信范围。可是实际上,同轴电缆本身是有损耗的,和我们平常使用得导线一样,如果传输功率过大,导线会发热甚至熔断。这样,我们就有一种期望,试图寻找一种能够传输大功率,同时损耗又非常小的同轴电缆。

大概在1929年,贝尔实验室做了很多实验,最终发现符合这种大功率传输,损耗小的同轴电缆其特征阻抗分别是30欧姆和77欧姆。其中,30欧姆的同轴电缆可以传输的功率是最大的,77欧姆的同轴电缆传输信号的损耗是最小的。30欧姆和77欧姆的算术平均值为53.5欧姆,30欧姆和77欧姆的几何平均值是48欧姆,我们经常所说的50欧姆系统阻抗其实是53.5欧姆和48欧姆的一个工程上的折中考虑,考虑最大功率传输和最小损耗尽可能同时满足。而且通过实践发现,50欧姆的系统阻抗,对于半波长偶极子天线和四分之一波长单极子天线的端口阻抗也是匹配的,引起的反射损耗是最小的。

我们常见的系统中,比如电视TV和广播FM接收系统中,其系统阻抗基本上都是75欧姆,正是因为75欧姆射频传输系统中,信号传输的损耗是最小的,TV和广播FM接收系统中,信号的传输损耗是重要的考虑因素。而对于带有发射的电台而言,50欧姆是很常见的,因为最大功率传输是我们考虑的主要因素,同时损耗也比较重要。这就是为什么我们的对讲机系统中,经常看到的都是50欧姆的参数指标。

如果说阻抗匹配到50欧姆,从数学上,是可以严格做到的,但是实际应用中的任何元件,线路,导线都存在损耗,而且设计的任何系统部件都存在一定的射频带宽,所以匹配到50欧姆,工程上只要保证所有的带内频点落在50欧姆附近即可。在Smith圆图上来看,就是尽可能趋近于圆图的圆心即可,确保带内的射频传输信号尽可能没有反射损耗,获得最大程度的能量传输。



为什么大多数工程师喜欢用 50 欧姆作为 PCB 的传输线阻抗(有时候这个值甚至就是 PCB 板的缺省值) ,为什么不是 60 或者是 70 欧姆呢?



对于宽度确定的走线,3 个主要的因素会影响 PCB 走线的 阻抗。首先,是 PCB 走线近区场的 EMI(电磁干扰)和这个走线距参考平面的高度是成一定的比例关系的,高度越低意味着辐射越小。其次,串扰会随走线高度有显著的变化,把高度减少一半,串扰会减少到近四分之一。最后,高度越低阻抗越小,不易受电容性负载影响。所有的三个因素都会让设计者把走线尽量靠近参考平面。阻止你把走线高度降到零的原因是,大多数芯片驱动不了阻抗小于 50 欧姆的传输线。(这个规则的特例是可以驱动 27 欧姆的Rambus,以及 National 的的 BTL 系列,它可以驱动 17 欧姆)并不是所有的情况都是用50欧姆最好。例如,8080 处理器的很老的 NMOS 结构,工作在 100KHz,没有 EMI,串扰和电容性负载的问题,它也不能驱动 50 欧姆。对于这个处理器来说,高的阻抗意味着低功耗,你要尽可能的用细的,高的这样有高阻抗的线。纯机械的角度也要考虑到。例如,从密度上讲,多层板层间距离很小,70 欧姆阻抗所需要的线宽工艺很难做到。这种情况,你应该用 50 欧姆,它的线宽更加宽,更易于制造。

同轴电缆的阻抗又是怎么样的呢?在 RF 领域,和 PCB 中考虑的问题不一样,但是RF 工业中同轴电缆也有类似的阻抗范围。根据 IEC 的出版物(1967年),75 欧姆是一个常见的同轴电缆(注:空气作为绝缘层)阻抗标准,因为你可以和一些常见的天线配置相匹配。它也定义了一种基于固态聚乙烯的 50 欧姆电缆,因为对于直径固定的外部屏蔽层和介电常数固定为 2.2(固态聚乙烯的介电常数)的时候,50 欧姆阻抗趋肤效应损耗最小。


你可以从基本的物理学来证明 50 欧姆是最好的,电缆的趋肤效应损耗 L(以分贝做单位)和总的趋肤效应电阻 R(单位长度)除以特性阻抗 Z0 成正比。总的趋肤效应电阻 R 是屏蔽层和中间导体电阻之和。屏蔽层的趋肤效应电阻在高频时,和它的直径d2 成反比。同轴电缆内部导体的趋肤效应电阻在高频时,和他的直径 d1 成反比。总共的串联电阻 R,因此和(1/d2 +1/d1)成正比。综合这些因素,给定 d2 和相应的隔离材料的介电常数 ER,你可以用以下公式来减少趋肤效应损耗。

在任何关于电磁场和微波的基础书中,你都可以找到 Z0 是 d2,d1 和 ER(博主注:绝缘层的相对介电常数)的函数。


把公式 2 带入公式 1 中,分子分母同时乘以 d2,整理得到:

公式 3 分离出常数项(/60)*(1/d2),有效的项((1+d2/d1 )/ln(d2/d1 ))确定最小点。仔细查看公式三公式的最小值点仅由 d2/d1 控制,和 ER 以及固定值 d2 无关。以 d2/d1为参数,为 L 做图,显示 d2/d1=3.5911 时(注:解一个超越方程),取得最小值。假定固态聚乙烯的介电常数为 2.25,d2/d1=3.5911 得出特性阻抗为 51.1 欧姆。很久之前,无线电工程师为了方便使用,把这个值近似为 50 欧姆作为同轴电缆最优值。这证明了在0 欧姆附近,L 是最小的。但这并不影响你使用其他阻抗。例如,你做一个 75 欧姆的电缆,有着同样的屏蔽层直径(注:d2)和绝缘体(注:ER),趋肤效应损耗会增加 12%。不同的绝缘体,用最优 d2/d1 比例产生的最优阻抗会略有不同(注:比如空气绝缘就对应 77 欧姆左右,工程师取值 75 欧姆方便使用)。

其他补充:上述推导也解释了为什么 75 欧姆电视电缆切面是藕状空芯结构而 50 欧姆通信电缆是实芯的。还有一个重要提示,只要经济情况许可,尽量选择大外径电缆(博主注:d2),除了提高强度外,更主要的原因是,外径越大,内径也越大(最优的径比d2/d1),导体的 RF 损耗当然就越小。

为什么 50 欧姆成为了射频传输线的阻抗标准?一个最为流传的故事版本,来自于 Harmon Banning 的《电缆:关于 50 欧姆的来历可能有很多故事》。在微波应用的初期,二次世界大战期间,阻抗的选择完全依赖于使用的需要.对于大功率的处理,30 欧姆和 44 欧姆常被使用。另一方面,最低损耗的空气填充线的阻抗是 93 欧姆。在那些岁月里,对于很少用的更高频率,没有易弯曲的软电缆,仅仅是填充空气介质的刚性导管。半刚性电缆诞生于 50 年代早期,真正的微波软电缆出现是大约 10 年以后了。随着技术的进步,需要给出阻抗标准,以便在经济性和方便性上取得平衡。在美国,50 欧姆是一个折中的选择;为联合陆军和海军解决这些问题,一个名为 JAN 的组织成立了,就是后来的 DESC,由 MIL 特别发展的。欧洲选择了 60 欧姆。事实上,在美国最多使用的导管是由现有的标尺竿和水管连接成的,51.5 欧姆是十分常见的。看到和用到 50 欧姆到 51.5 欧姆的适配器/转换器,感觉很奇怪的。最终 50 欧姆胜出了,并且特别的导管被制造出来(也可能是装修工人略微改变了他们管子的直径)。不久以后,在象 Hewlett-Packard 这样在业界占统治地位的公司的影响下,欧洲人也被迫改变了。75 欧姆是远程通讯的标准,由于是介质填充线,在 77 欧姆获得最低的损耗。93 欧姆一直用于短接续,如连接计算机主机和监视器,其低电容的特点,减少了电路的负载,并允许更长的接续;感兴趣的读者可以查阅 MIT RadLab Series 的第 9 卷,里面有更详细的描述。


0 2

RF电路设计中的阻抗匹配

阻抗匹配是射频(RF)设计和测试的基本要求。阻抗不匹配引起的信号反射会导致严重的问题。

当您处理由理想电源,传输线和负载组成的理论电路时,匹配似乎是一项微不足道的常识。


0 3

假设负载阻抗ZL是固定的。我们需要做的就是包括一个等于ZL的源阻抗(ZS),然后设计传输线,使其特性阻抗(Z0)也等于ZL。

但是,让我们暂时考虑一下在由众多无源元件和集成电路组成的复杂RF(射频)电路中实施此方案的难度。如果工程师不得不根据选择的一个阻抗作为所有其他阻抗的基础来修改每个组件并指定每个微带的尺寸,那么射频(RF)设计的过程将非常笨拙。

此外,这还假定该项目已经进入PCB阶段。如果我们想使用离散模块以现成的电缆作为互连来测试和表征系统,该怎么办?在这种情况下,补偿不匹配的阻抗更加不切实际。

解决方案很简单:选择可在众多RF(射频)系统中使用的标准化阻抗,并确保相应设计组件和电缆,等都已经选择了该阻抗:业界选择的这种标准阻抗的单位是欧姆,数字是50。


首先要了解的是,对于50Ω阻抗,本质上没有什么特别的。虽然您可能会觉得,如果您花了足够的时间来和RF(射频)工程师一起工作,就会感觉到那并不是一个基本的常数。它甚至不是电气工程的基本常数,例如,请记住,简单地改变同轴电缆的物理尺寸都会改变它的特性阻抗。

尽管如此,50Ω阻抗还是非常重要的,因为大多数RF(射频)系统都围绕该阻抗进行设计。很难确切地确定为什么50Ω成为标准的RF(射频)阻抗,但是可以合理地假设发现50Ω在早期同轴电缆的情况下是一个很好的折衷方案。


当然,重要的问题不是这个特定值的来源,而是具有此标准化阻抗的好处。实现完美匹配的设计要简单得多,因为IC,固定衰减器,天线等制造商可以考虑这一阻抗来构建其部件。而且,PCB布局变得更加简单,因为如此多的工程师都有相同的目标,即设计特征阻抗为50的微带和带状线。


0 4


根据Analog Devices的该应用笔记(MT-094.pdf),您可以按以下方式创建50Ω微带:1盎司铜,20 mil宽的走线,走线和接地层之间的间隔为10 mil(假设采用的是FR-4的电介质材料)。

在继续进行之前,我们要弄清楚,并不是每个高频系统或组件都针对50Ω设计的。可以选择其他值,实际上75Ω阻抗仍然很常见;同轴电缆的特性阻抗与其外径(D2)与内径(D1)之比的自然对数成正比。

这意味着内部导体和外部导体之间的更大间隔对应于更高的阻抗。两个导体之间的较大间距也导致较低的电容。因此,75Ω同轴电缆的电容比50Ω同轴电缆的电容低,这使75Ω电缆更适合于高频数字信号,因为这种信号需要低电容,以避免与逻辑低和逻辑高之间的快速过渡相关的高频内容过度衰减。


0 5

考虑到阻抗匹配在RF设计中的重要性,我们不奇怪发现有一个用于表示匹配质量的特定参数。称为反射系数;该符号为Γ(希腊大写字母gamma)。它是反射波的复振幅与入射波的复振幅之比。但是,入射波和反射波之间的关系由源阻抗(ZS)和负载阻抗(ZL)确定,因此可以根据这些阻抗定义反射系数为:

如果在这种情况下“源”是传输线,我们可以将ZS更改为Z0,得到的反射系数如下:

在典型的系统中,反射系数的大小为0到1之间的某个数字。让我们看一下数学上最简单的三种情况,以帮助我们了解反射系数与实际电路行为的对应关系:

a、如果匹配完美(ZL = Z0),则分子为零,因此反射系数为零。这是有道理的,因为完美匹配不会导致反射。

b、如果负载阻抗是无限的(即开路,ZL = 无穷大),则反射系数变为无穷大除以无穷大,即为1,而反射系数为1对应于全反射,即所有波能都被反射。这也是有道理的,因为连接到开路的传输线对应于一个完全的不连续性(请参见上一讲的内容)-负载不能吸收任何能量,因此必将被全部反射。

c、如果负载阻抗为零(即短路,ZL = 0),则反射系数的大小变为Z0除以Z0。这样我们又有了|Γ| = 1,这也是有道理的,因为短路也对应于不能吸收任何入射波能量的阻抗完全不连续性。

驻波比(VSWR)

用于描述阻抗匹配的另一个参数是电压驻波比(VSWR),定义如下:

从所得驻波(VSWR)的角度来看,VSWR接近阻抗匹配。它传达了最高驻波幅度与最低驻波幅度之比。有很多驻波(VSWR)视频可以帮助您可视化阻抗失配与驻波幅度特性之间的关系,下图显示了三种不同反射系数的驻波幅度特性。

三种VSWR情况下的波形图:更大的阻抗失配会导致沿驻波的最高振幅位置和最低振幅位置之间的差异更大

VSWR通常表示为比率:完美匹配将是1:1,这意味着信号的峰值幅度始终相同(即没有驻波)。2:1的比率表示反射已导致驻波,其最大振幅是其最小振幅的两倍。

总结

1、标准化阻抗的使用使RF设计更加实用和高效。

2、大多数RF系统的阻抗约为50Ω。某些系统使用75Ω。后一个值更适合于高速数字信号。

3、阻抗匹配的质量可以通过反射系数(Γ)在数学上表示。完全匹配对应于Γ= 0,而完全不连续(其中所有能量都被反射)对应于Γ= 1。

4、量化阻抗匹配质量的另一种方法是电压驻波比(VSWR)。

0 6

0 7

往期精彩

1、超详细USB Type-C引脚信号及PCB布局布线介绍

2、超详细开关电源芯片内部电路解析;

3、70G硬件设计资料汇总分享;【友情推荐

4、分享一份老工程师(某为工作15年)经常使用的pcb企业封装库包含3D库;【友情推荐

5、【0基础学硬件】为什么在VCC入口串联一个小电阻?可以不加吗?

6、高薪工作机会分享。【找工作看这里

关注【电子芯期天】后台回复关键字免费资料。获取PCB封装库规范、PCB设计设计规范、华为EMC基础知识、开关电源入门知识等资料。



电子芯期天 致力于分享各种电子电路开发设计资料及经验.
评论
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 58浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 119浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 141浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 202浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 89浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 115浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 106浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 164浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 61浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 69浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 222浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦