干货 | 实例讲解AC/DC 降压转换器电路讲解

电子工程世界 2021-02-08 00:00
诸如智能电表或者功率监控器的离线设备都有一些要求10W以下非隔离DC电源的电子元件。到目前为止,通过一个AC电源提供低功耗DC电源的唯一实用方法仍然是在整流器后面使用一个效率极低、未经调节的电阻/电容分压器,或者一个难以设计的反向DC/DC转换器。

MOSFET 技术的一些进展以及创新的磁滞降压控制器栅极带来了一种超低成本DC电源。

图 1 显示了完整的转换器。整流器电路使用一个标准、快速开关整流器二极管桥接 (D1) 和一个LC滤波器(L1和C2),我们将对其余组件进行更加详细的介绍。

图 1 AC/DC 降压转换器电路

基本降压转换器


TPS64203是一款磁滞降压转换器,专为驱动高端pFET 而设计,拥有最小导通和断开开关时间要求。传统的磁滞转换器有随负载电流变化的开关频率,与其不同的是,最小导通和断开时间在转换器以高输出功耗电平在连续导通模式下运行时,从根本上控制开关频率。TPS6420x 系列中的其他一些转换器可主动避免在声频范围内进行开关操作,从而有效地获得最大导通和断开时间。TPS6420x系列起初是为电池供电型应用而设计,拥有1.8V~6.5V的输入电压范围,以及非常低的静态电流(最大为 35 μA)。在启动期间,TPS64203被齐纳二极管D2以及高压电阻R2和R3偏置。5V电压上升以后,肖特基二极管D4允许5V输出驱动控制器。

功率FET Q4必须具有足够高的VDS电压额定值,以使其不会被输入电压损坏,同时还要有足够高的电流额定值以处理IPMOS(RMS) = IOUT(max) ×√Dmax。它的封装还必须能够驱散PCond = (IOUT(max) × √Dmax)2 × RDS(on)。一般来说,高压P通道FET有一个过大的栅极电容或者导通/断开时间,过高的漏-源电阻 (RDS(on)),过大的阈值电压 (VTH),以和/或制造图1所示实际电路时的过高成本(即足够的成本效益)。由于230VRMS + 10%容差的高压线来自350VPK AC线,因此FET、滤波器和输入电容需要根据400V设定额定值。

FQD2P40相对较新,即400V P通道MOSFET。利用10V栅极驱动的5.0Ω RDS(on) 以及小于13nC的总选通电极充电,借助于由Q2、Q3、C4和D3组成的创新驱动电路,该FET可轻松地通过控制器开关拥有比老式FET相对更少的导电和开关损耗。我们选择转换器的整流肖特基二极管D5,因为它拥有可阻止输入电压的电压额定值、稍高于输出电压的峰值电流额定值,以及IDiode(Avg) =(1 – D) × IOUT(max)的平均电流额定值。利用Dmax 5 V/120 V = 0.04 以及如此低的输出功率,峰值电流额定值和功耗在两种开关中都不成问题。
降压功率级的LC滤波器如TPS6420x系列产品说明书中介绍那样设计。利用高于输出电压的输入电压,所有TPS6420x控制器将运行在最小导通时间模式下。方程式(1)计算高线压下的建议降压转换器电感,其假设电感纹波电流系数的 K=0.4。


相对较高的K值最小化了电感值,并且经证明是可以接受的,因为这种特殊应用的稳态输出纹波要求小于0.02 × VOUT,即高负载时的100mVPP。磁滞后,TPS6420x控制器一般在输出电压有一些纹波时工作效果最佳,建议使用至少 50mΩ ESR的输出电容可产生ΔVPP(ESR) = ΔIL × RESR的纹波电压,其一般远超出电压纹波的电容分量。图2显示了该应用测得纹波。

图 2 VIN=250 VDC 和 IOUT=500mA 的输出纹波

由于 TPS64203为磁滞型,因此在其运行在脉冲频率模式下时,其输出电压在更低输出功率下将会有更高的纹波。测得转换器的工作频率约为 32 kHz,其与下列预计值一致:


工作原理


双极型晶体管Q1和电阻R4及R5构成一个恒流驱动的电平位移器,其允许低压 TPS64203控制器操作由Q2和Q3构成的离散式栅极驱动电路。同控制器一样,电平位移器在启动时由齐纳二极管D2驱动,而在启动以后经调节的5V则通过肖特基二极管D4驱动。功率FET Q4的栅极必须刚好过驱动,以为要求输出电流提供可接受的RDS(on)。驱动过多会增加开关损耗,而驱动过少又会增加传导损耗。检查一些实验和误差后,我们选择了 VGS ≈12 V。

电容C4和二极管D3对驱动电路的功能至关重要。通过选择电阻R5来将12V栅极驱动电平设置在整流器输出电压以下。二极管D3将电容C4限定在这一电平。特别是,当U1的开关引脚输出一个低信号来开启功率FET时,信号被电平位移到Q3的基极。晶体管Q3开启,并快速地将Q4的栅—源电容CGS充电至 12V。如果没有C4和D3的话,关闭Q4会让Q3成为一种漏极接地的昂贵的高压双极型晶体管。当U1的开关引脚输出一个高信号来关闭功率FET时,该信号被电平位移至Q2的基极。Q2开启,有效地将Q4的栅极与输入电压连接。在没有起到本地电源作用的电容C4的情况下,晶体管Q2和Q3无法提供快速(且因此而高效地)上拉或下拉Q4栅极电容所必需的快速电流峰值,注意到这一点很重要。另外,由R4设定的电平位移器电流ILS必须足够高,以在ton(min) 期间移动Q4的栅极电荷QGate。也就是说:


电容C4值设定大于Q4的栅极电容,但其必须足够小,以便在更短控制器最小导通与断开时间期间能够得到再充电。图3显示了300V和500mA负载输入电压下,一个开关周期的栅极和漏极导通/断开时间。表1显示了测得的转换效率。

图 3 一个开关周期的Q4栅极和漏极电压

表 1 测得的转换效率:

电流限制与软启动


在许多低压应用中,TPS6420x使用一个高端限流电路,旨在将安装在VIN和 ISENSE引脚之间的电流检测电阻的压降同基准参考电压进行对比。如果检测电阻的电压超出该电压,则电路关闭开关,从而实现逐脉冲电流限制。高压应用中, ISENSE引脚上没有过电压时无法使用限流电路,因此ISENSE引脚高位连接至VIN。图1所示电路没有电流限制,推荐使用高端保险丝来提供短路保护。

在一些典型的启动应用中,TPS64203限流值慢慢上升,以提供限流的受控软启动。在这种应用中,限流电路和软启动均无效;因此,启动浪涌电流会很大,而输出电压会稍稍过冲,如图 4 所示。

图4 VIN=300V时10Ω负载启动

结论


使用一个电平转换器和栅极驱动器以及一个局部电源可以实现使用一个低压降压转换器通过AC电源来提供DC电压,使用一个简单的电路在没有变压器的情况下就可以获得近60%的转换效率。这种电路也可以用于DC/DC转换,其输入 DC电压高于TPS6420x 的最大额定值。


免责声明:本文系网络转载,版权归原作者所有。如本文所用视频、图片、文字如涉及作品版权问题,请在文末留言告知,我们将在第一时间处理!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。


 

推荐阅读

干货 | 教你如何给Boost电路加保护电路?

干货|运放电路:同相放大还是反相放大,你真的懂了吗?

干货 | 优化电路性能和成本之电源散热

干货 | PCB如何设计才能发挥EMC最优效果?

众号内回复您想搜索的任意内容,如问题关键字、技术名词、bug代码等,就能轻松获得与之相关的专业技术内容反馈。快去试试吧!


由于微信公众号近期改变了推送规则,如果您想经常看到我们的文章,可以在每次阅读后,在页面下方点一个「赞」或「在看」,这样每次推送的文章才会第一时间出现在您的订阅列表里。


或将我们的公众号设为星标。进入公众号主页后点击右上角「三个小点」,点击「设为星标」,我们公众号名称旁边就会出现一个黄色的五角星(Android 和 iOS 用户操作相同)。


聚焦行业热点, 了解最新前沿
敬请关注EEWorld电子头条
http://www.eeworld.com.cn/mp/wap
复制此链接至浏览器或长按下方二维码浏览
以下微信公众号均属于
  EEWorld(www.eeworld.com.cn)
欢迎长按二维码关注!
EEWorld订阅号:电子工程世界
EEWorld服务号:电子工程世界福利社
电子工程世界 关注EEWORLD电子工程世界,即时参与讨论电子工程世界最火话题,抢先知晓电子工程业界资讯。
评论 (0)
  •   安全生产预警系统作为现代工业与安全管理的重要组成部分,正以前所未有的技术引领力,创新性地塑造着未来的安全管理模式。这一系统通过集成多种先进技术,如物联网、大数据、人工智能、云计算等,实现了对生产环境中潜在危险因素的实时监测、智能分析与及时预警,为企业的安全生产提供了坚实的技术保障。   技术引领:   物联网技术:物联网技术使得各类安全监测设备能够互联互通,形成一张覆盖全生产区域的安全感知网络。传感器、摄像头等终端设备实时采集温度、压力、气体浓度、人员位置等关键数据,为预警系统提供丰富的
    北京华盛恒辉软件开发 2025-04-05 22:18 52浏览
  • 【拆解】+沈月同款CCD相机SONY DSC-P8拆解 这个清明假期,闲来无事,给大伙带来一个老古董物品的拆解--索尼SONY DSC-P8 CCD相机。这个产品是老婆好几年前在海鲜市场淘来的,由于显示屏老化,无法正常显示界面了,只有显示背光。但是这也无法阻止爱人的拍照。一顿盲操作依旧可以拍出CCD古董相机的质感。如下实拍: 由于这个相机目前都在吃灰。我就拿过来拆解,看看里面都是怎样个设计,满足下电子爱好者的探索。 首先给大伙展示下这台老相机的全貌。正视图  后视图 
    zhusx123 2025-04-06 17:38 81浏览
  • 在影像软的发展历程中,美图曾凭借着美图秀秀等一系列产品,在“颜值经济”的赛道上占据了领先地位,成为了人们日常生活中不可或缺的一部分,也曾在资本市场上风光无限,2016 年上市时,市值一度超过46亿美元,备受瞩目。 然而,随着市场的不断发展和竞争的日益激烈,美图逐渐陷入了困境。商业模式单一,过度依赖在线广告收入,使得其在市场波动面前显得脆弱不堪;多元化尝试,涉足手机、电商、短视频、医美等多个领域,但大多以失败告终,不仅未能带来新的增长点,反而消耗了大量的资源。更为严峻的是,用户流失问题日
    用户1742991715177 2025-04-05 22:24 64浏览
  • 及时生产 JIT(Just In Time)的起源JIT 起源于 20 世纪 70 年代爆发的全球石油危机和由此引发的自然资源短缺,这对仰赖进口原物料发展经济的日本冲击最大。当时日本的生产企业为了增强竞争力、提高产品利润,在原物料成本难以降低的情况下,只能从生产和流通过程中寻找利润源,降低库存、库存和运输等方面的生产性费用。根据这种思想,日本丰田汽车公司创立的一种具有特色的现代化生产方式,即 JIT,并由此取得了意想不到的成果。由于它不断地用于汽车生产,随后被越来越多的许多行业和企业所采用,为日
    优思学院 2025-04-07 11:56 82浏览
  • 医疗影像设备(如CT、MRI、超声诊断仪等)对PCB的精度、可靠性和信号完整性要求极高。这类设备需要处理微伏级信号、高频数据传输,同时需通过严格的EMC/EMI测试。制造此类PCB需从材料选择、层叠设计、工艺控制等多维度优化。以下是关键技术与经验分享。 1. 材料选择:高频与生物兼容性优先医疗影像设备PCB常采用 Rogers RO4000系列 或 Isola FR4高速材料,以降低介电损耗并保证信号稳定性。例如,捷多邦在客户案例中曾为某超声探头厂商推荐 Rogers RO4350B
    捷多邦 2025-04-07 10:22 69浏览
  • 引言:POPO声的成因与影响在语音芯片应用中,WT588F08A作为一款支持DAC+功放输出的高集成方案,常因电路设计或信号处理不当,在音频播放结束后出现POPO声(瞬态噪声)。这种噪声不仅影响用户体验,还可能暴露电路设计缺陷。本文将基于实际案例,解析POPO声的成因并提供系统化的解决方案。一、POPO声的根源分析1. 功放电路状态切换的瞬态冲击当DAC输出的音频信号突然停止时,功放芯片的输入端若处于高阻态或无信号状态,其内部放大电路会因电源电压突变产生瞬态电流,通过喇叭表现为POPO声。关键因
    广州唯创电子 2025-04-07 09:01 75浏览
  • 引言:小型化趋势下的语音芯片需求随着消费电子、物联网及便携式设备的快速发展,产品设计对芯片的小型化、高集成度和低功耗提出了更高要求。厂家凭借其创新的QFN封装技术,推出WTV系列(如WTV380)及WT2003H系列语音芯片,以超小体积、高性能和成本优势,为紧凑型设备提供理想解决方案。产品核心亮点1. QFN封装技术赋能超小体积极致尺寸:WTV380采用QFN32封装,尺寸仅4×4毫米,WT2003H系列同样基于QFN工艺,可满足智能穿戴、微型传感器等对空间严苛的场景需求。高密度集成:QFN封装
    广州唯创电子 2025-04-07 08:47 60浏览
  • 【拆解】+南孚测电器拆解 之前在天猫上买了一盒南孚电池,他给我送了一个小东西—测电器。今天我们就来拆解一下这个小东西,看看它是怎么设计和工作的。 三颗指示灯显示电池剩余电量。当点亮3颗LED时,则表示点亮充足。当点亮2颗LED时,则表示还能用。当点亮1颗LED时,表示点亮地建议更换,当无法点亮LED时,则表示没电了。外壳上还印有正负极,以免用户将电池放反。 这个小东西拆解也很方便,一个螺丝刀稍微撬几下。外壳就下来了,它是通过卡扣连接。 开盖后,测电线路板清晰呈现在眼前。 让我们看看小小的线路板有
    zhusx123 2025-04-05 15:41 50浏览
  • 在追求环境质量升级与产业效能突破的当下,温湿度控制正成为横跨多个行业领域的核心命题。作为环境参数中的关键指标,温湿度的精准调控不仅承载着人们对舒适人居环境的期待,更深度关联着工业生产、科研实验及仓储物流等场景的运营效率与安全标准。从应用场景上看,智能家居领域要求温湿度系统实现与人体节律的协同调节,半导体洁净车间要求控制温湿度范围及其波动以保障良品率,而现代化仓储物流体系则依赖温湿度的实时监测预防各种产品的腐损与锈化。温湿度传感器作为实现温湿度监测的关键元器件,其重要性正在各行各业中凸显而出。温湿
    华普微HOPERF 2025-04-07 10:05 69浏览
  • 在科技浪潮奔涌的当下,云计算领域的竞争可谓是如火如荼。百度智能云作为其中的重要参与者,近年来成绩斐然。2024年,百度智能云在第四季度营收同比增长26%,这样的增速在行业内十分惹眼。回顾全年,智能云业务的强劲增长势头也十分明显,2024年第一季度,其收入达到47亿元,同比增长12%;第二季度营收51亿元,同比增长14%。从数据来看,百度智能云在营收方面一路高歌猛进,展现出强大的发展潜力。然而,市场对百度智能云的表现似乎并不完全买账。2024年,尽管百度智能云数据亮眼,但百度股价却在震荡中下行。在
    用户1742991715177 2025-04-06 20:25 61浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦