恩智浦“FRDM-MCXN947”评测活动由安富利和与非网协同举办。本篇内容由与非网用户发布,已获转载许可。原文可在与非网(eefocus)工程师社区查看。
一个L9110S驱动可以控制一个电机,下图中的GroundStudio L9110s模块板载两个L9110s芯片,可以驱动两个直流电机。
此模块有6根引脚,如下:
简单来说L9110S的输入输出有以下四种情形:
从上图可知,只需要给IN1和IN2管脚输入不同的电平就能实现正转、反转,输入相同的电平就能停转。
需要注意,不要直接由开发板来给模块供电,因为L9110S模块可能因为需求的驱动功率太高而导致板子上的供电不平衡。
从上表可知,使用GPIO给IN1和IN2也能驱动电机,但是不能控制速度。现在我们需要实现能控制速度的电机驱动。自然而然想到了PWM调速。
假设给IN2管脚用GPIO控制,拉低电平,只需要PWM往IN1灌高电平就可以驱动电机正转,调节PWM占空比就可以实现电机转速;把IN2管脚拉高电平,用PMW往IN1灌低电平就可以实现电机反转,注意此时的占空比和转速是反着的,即占空比越大,转速越慢。
这里选择eFlexPWM产生PWM1_A通道的PWM波来控制电机,另外一个管脚用GPIO来控制电平调节正反转。
为了方便调试,先实现命令行接口,可以方便的通过串口输入命令调节参数控制电机正反转和转速。然后实现对应的电机驱动接口。
FreeRTOS-CLI新增命令行,支持如下的3种命令:
(滑动查看)
motor stop // 电机停转
motor left speed // 电机正转,speed 表示速度,取值范围 [0, 100]
motor right speed // 电机反转,speed 表示范围,取值范围 [0, 100]
当前命令行的解析函数prvMotorCommand()如下,其实最终调用的函数是分别是motor_stop(),motor_left(speed)和motor_right(speed)这三个函数。
(滑动查看)
/**
* @brief 直流电机命令的实现
*
* motor left/right speed 其中 speed 取值范围是 [0, 100]
* motor stop
*
* 示例:
* motor left 0
* motor left 100
* motor right 20
* motor right 80
* motor stop 停转
*
* @param pcWriteBuffer
* @param xWriteBufferLen
* @param pcCommandString
* @return BaseType_t
*/
static BaseType_t prvMotorCommand( char *pcWriteBuffer, size_t xWriteBufferLen, const char *pcCommandString )
{
configASSERT(pcWriteBuffer);
br
/* param1: left/right/stop */
const char *paramMotorCmd1 = NULL;
BaseType_t paramMotorCmd1Length = 0;
br
/* param2: speed */
const char *paramMotorCmd2 = NULL;
BaseType_t paramMotorCmd2Length = 0;
uint32_t speed = 0;
br
// 首先清除输出缓冲区旧的内容
memset(pcWriteBuffer, 0, xWriteBufferLen);
br
/* arg0 arg1 arg2 */
/* 命令形式1:motor left/right speed */
/* 命令形式2:motor stop */
paramMotorCmd1 = FreeRTOS_CLIGetParameter(pcCommandString, 1, ¶mMotorCmd1Length);
br
if (strncmp("stop", paramMotorCmd1, strlen("stop")) == 0) {
motor_stop();
sprintf(pcWriteBuffer, "\r\n motor_stop() \r\n");
} else {
/* 获取 speed */
paramMotorCmd2 = FreeRTOS_CLIGetParameter(pcCommandString, 2, ¶mMotorCmd2Length);
if (paramMotorCmd2 != NULL) {
speed = strtoul(paramMotorCmd2, NULL, 10);
br
if (speed >= 100) {
speed = 99; /* NOTE: PWM 占空比 <= 100 但由于两个高电平导致电机停转,所以占空比应该 < 100 */
}
}
br
if (strncmp("left", paramMotorCmd1, strlen("left")) == 0) {
sprintf(pcWriteBuffer, "\r\n motor_left(%u) \r\n", speed);
motor_left(speed);
} else if (strncmp("right", paramMotorCmd1, strlen("right")) == 0) {
sprintf(pcWriteBuffer, "\r\n motor_right(%u) \r\n", speed);
motor_right(speed);
} else {
sprintf(pcWriteBuffer, "\r\nError: arg1 should be left/right\r\n");
}
}
br
/* There is no more data to return after this single string, so return pdFALSE. */
return pdFALSE;
}
PWM和GPIO初始化
通过MCUXpresso Config Tools来实现,配置J3.15为PWM1_A0,配置J3.13为GPIO输出模式。生成代码,自动保存在pin_mux.c文件中。
在MCUXpresso Config Tools中,点击(1)处新建分组BOARD_MOTOR_Init,把电机相关的管脚都放在同一个组里初始化;
在(2)处可以看到J3.15配置为PWM1_A0信号,J3.13配置为PIO2_7且为输出;
在(3)处给管脚添加标识符,会生成相对应的宏定义。
对应的管脚初始化代码如下:
(滑动查看)
void BOARD_MOTOR_Init(void)
{
/* Enables the clock for GPIO2: Enables clock */
CLOCK_EnableClock(kCLOCK_Gpio2);
/* Enables the clock for PORT2: Enables clock */
CLOCK_EnableClock(kCLOCK_Port2);
gpio_pin_config_t MOTOR_DIR_config = {
.pinDirection = kGPIO_DigitalOutput,
.outputLogic = 0U
};
/* Initialize GPIO functionality on pin PIO2_7 (pin L2) */
GPIO_PinInit(MOTOR_MOTOR_DIR_GPIO, MOTOR_MOTOR_DIR_PIN, &MOTOR_DIR_config);
/* PORT2_6 (pin K2) is configured as PWM1_A0 */
PORT_SetPinMux(MOTOR_MOTOR_SPEED_PORT, MOTOR_MOTOR_SPEED_PIN, kPORT_MuxAlt5);
PORT2->PCR[6] = ((PORT2->PCR[6] &
/* Mask bits to zero which are setting */
(~(PORT_PCR_IBE_MASK)))
/* Input Buffer Enable: Enables. */
| PORT_PCR_IBE(PCR_IBE_ibe1));
/* PORT2_7 (pin L2) is configured as PIO2_7 */
PORT_SetPinMux(MOTOR_MOTOR_DIR_PORT, MOTOR_MOTOR_DIR_PIN, kPORT_MuxAlt0);
PORT2->PCR[7] = ((PORT2->PCR[7] &
/* Mask bits to zero which are setting */
(~(PORT_PCR_IBE_MASK)))
/* Input Buffer Enable: Enables. */
| PORT_PCR_IBE(PCR_IBE_ibe1));
}
电机控制
需要实现4个函数,分别是:
motor_init()
motor_stop()
motor_left()
motor_right()
公共的类型和变量
(滑动查看)
br
/*******************************************************************************
* Definitions
******************************************************************************/
/* The PWM base address */
/* Definition for default PWM frequence in hz. */
br
/* Macros ----------------------------------------------------------------------------------------*/
br
br
/* Data Types ------------------------------------------------------------------------------------*/
br
typedef enum {
MOTOR_DIR_LEFT = 0,
MOTOR_DIR_RIGHT = 1,
} motor_dir_e;
br
static uint32_t pwmSourceClockInHz;
static uint32_t pwmFrequencyInHz;
static pwm_signal_param_t pwmSignal = { 0 };
static motor_dir_e m_motor_dir = MOTOR_DIR_LEFT;
motor_init()
(滑动查看)
static void PWM_DRV_Init2PhPwm(void)
{
uint16_t deadTimeVal;
br
/* Set deadtime count, we set this to about 650ns */
deadTimeVal = ((uint64_t)pwmSourceClockInHz * 650) / 1000000000;
br
pwmSignal.pwmChannel = kPWM_PwmA;
pwmSignal.level = kPWM_HighTrue;
pwmSignal.dutyCyclePercent = 30; /* x percent dutycycle */
pwmSignal.deadtimeValue = deadTimeVal;
pwmSignal.faultState = kPWM_PwmFaultState0;
pwmSignal.pwmchannelenable = true;
br
/*********** PWMA_SM0 - phase A, configuration, setup 2 channel as an example ************/
PWM_SetupPwm(BOARD_PWM_BASEADDR, kPWM_Module_0, &pwmSignal, 1,
kPWM_SignedCenterAligned, pwmFrequencyInHz, pwmSourceClockInHz);
}
br
/**
* @brief 直流电机初始化,即 PWM1 的通道A和通道B初始化
*
* @return int 0 on success, others on failure.
*/
int motor_init(void)
{
pwm_config_t pwmConfig;
pwm_fault_param_t faultConfig;
br
pwmSourceClockInHz = PWM_SRC_CLK_FREQ;
pwmFrequencyInHz = APP_DEFAULT_PWM_FREQUENCY;
br
SYSCON->PWM1SUBCTL |= SYSCON_PWM1SUBCTL_CLK0_EN_MASK; /* 只使能子模块0 */
br
PWM_GetDefaultConfig(&pwmConfig);
br
pwmConfig.reloadLogic = kPWM_ReloadPwmFullCycle; /* use full cycle reload */
pwmConfig.pairOperation = kPWM_Independent; /* PWM A & PWM B operate as 2 independent channels */
pwmConfig.enableDebugMode = true;
br
if (PWM_Init(BOARD_PWM_BASEADDR, kPWM_Module_0, &pwmConfig) == kStatus_Fail)
{
PRINTF("PWM initialization failed\r\n");
return 1;
}
br
PWM_FaultDefaultConfig(&faultConfig);
br
faultConfig.faultLevel = DEMO_PWM_FAULT_LEVEL;
br
/* Sets up the PWM fault protection */
PWM_SetupFaults(BOARD_PWM_BASEADDR, kPWM_Fault_0, &faultConfig);
PWM_SetupFaults(BOARD_PWM_BASEADDR, kPWM_Fault_1, &faultConfig);
PWM_SetupFaults(BOARD_PWM_BASEADDR, kPWM_Fault_2, &faultConfig);
PWM_SetupFaults(BOARD_PWM_BASEADDR, kPWM_Fault_3, &faultConfig);
br
/* Set PWM fault disable mapping for submodule 0 */
PWM_SetupFaultDisableMap(BOARD_PWM_BASEADDR, kPWM_Module_0, kPWM_PwmA, kPWM_faultchannel_0,
kPWM_FaultDisable_0 | kPWM_FaultDisable_1 | kPWM_FaultDisable_2 | kPWM_FaultDisable_3);
br
/* Call the init function with demo configuration */
PWM_DRV_Init2PhPwm();
br
/* Set the load okay bit for all submodules to load registers from their buffer */
PWM_SetPwmLdok(BOARD_PWM_BASEADDR, kPWM_Control_Module_0, true);
br
PWM_StartTimer(BOARD_PWM_BASEADDR, kPWM_Control_Module_0);
br
motor_stop();
br
return 0;
}
motor_stop()
(滑动查看)
void motor_stop(void)
{
if (m_motor_dir == MOTOR_DIR_LEFT) {
MOTOR_DIR_SET_LEFT();
PWM_UpdatePwmDutycycle(BOARD_PWM_BASEADDR, kPWM_Module_0, kPWM_PwmA, kPWM_SignedCenterAligned, 0);
/* Set the load okay bit for all submodules to load registers from their buffer */
PWM_SetPwmLdok(BOARD_PWM_BASEADDR, kPWM_Control_Module_0, true);
} else {
MOTOR_DIR_SET_RIGHT();
PWM_UpdatePwmDutycycle(BOARD_PWM_BASEADDR, kPWM_Module_0, kPWM_PwmA, kPWM_SignedCenterAligned, 100);
/* Set the load okay bit for all submodules to load registers from their buffer */
PWM_SetPwmLdok(BOARD_PWM_BASEADDR, kPWM_Control_Module_0, true);
}
}
motor_left(speed)
(滑动查看)
/**
* @brief 正转
* @param speed 占空比,[0~100]
*/
void motor_left(uint32_t speed)
{
MOTOR_DIR_SET_LEFT();
m_motor_dir = MOTOR_DIR_LEFT;
br
PWM_UpdatePwmDutycycle(BOARD_PWM_BASEADDR, kPWM_Module_0, kPWM_PwmA, kPWM_SignedCenterAligned, speed);
/* Set the load okay bit for all submodules to load registers from their buffer */
PWM_SetPwmLdok(BOARD_PWM_BASEADDR, kPWM_Control_Module_0, true);
PWM_StartTimer(BOARD_PWM_BASEADDR, kPWM_Control_Module_0);
}
motor_right(speed)
(滑动查看)
/**
* @brief 反转
* @param speed
*/
void motor_right(uint32_t speed)
{
MOTOR_DIR_SET_RIGHT();
m_motor_dir = MOTOR_DIR_RIGHT;
speed = 100 - speed;
br
PWM_UpdatePwmDutycycle(BOARD_PWM_BASEADDR, kPWM_Module_0, kPWM_PwmA, kPWM_SignedCenterAligned, speed);
// PWM_SetChannelOutput(BOARD_PWM_BASEADDR, kPWM_Module_0, kPWM_PwmA, kPWM_InvertState);
/* Set the load okay bit for all submodules to load registers from their buffer */
PWM_SetPwmLdok(BOARD_PWM_BASEADDR, kPWM_Control_Module_0, true);
br
PWM_StartTimer(BOARD_PWM_BASEADDR, kPWM_Control_Module_0);
}
上面黄色的是CH2,即PWM1_A信号(J3.15);
下面绿色的是CH1,即GPIO信号(J3.13);
电机正转motor left时CH1输出低电平;
电机反转motor right时CH1输出高电平。
motor stop
两路信号都是低电平。电机停转。
motor left 5
电机正转,速度为5。示波器观测PWM1_A占空比为5。
motor left 70
电机正转,速度为70。示波器观测PWM1_A占空比为70。
motor left 100
虽然PWM占空比可以设置成100%,但是两个高电平导致电机停转,所以这里把占空比合理的范围是[0,99]。
motor right 5
motor right 70
motor right 100
—— 更多精彩内容 ——
关于安富利
安富利是全球领先的技术分销商和解决方案提供商,在过去一个多世纪里一直秉持初心,致力于满足客户不断变化的需求。通过遍布全球的专业化和区域化业务覆盖,安富利可在产品生命周期的每个阶段为客户和供应商提供支持。安富利能够帮助各种类型的公司适应不断变化的市场环境,在产品开发过程中加快设计和供应速度。安富利在整个技术价值链中处于中心位置,这种独特的地位和视角让其成为了值得信赖的合作伙伴,能够帮助客户解决复杂的设计和供应链难题,从而更快地实现营收。了解有关安富利的更多信息,请访问www.avnet.com