滤波电容越大越好吗?

凡亿PCB 2021-02-07 00:00

关注上方名片,学习更多知识!


耦合指信号由第一级向第二级传递的过程,一般不加注明时往往是指交流耦合。



退耦是指对电源采取进一步的滤波措施,去除两级间信号通过电源互相干扰的影响。耦合常数是指耦合电容值与第二级输入阻抗值乘积对应的时间常数。


退耦有三个目的


1、将电源中的高频纹波去除,将多级放大器的高频信号通过电源相互串扰的通路切断。

2、大信号工作时,电路对电源需求加大,引起电源波动,通过退耦降低大信号时电源波动对输入级/高电压增益级的影响。


3、形成悬浮地或是悬浮电源,在复杂的系 统中完成各部分地线或是电源的协调匹,有源器件在开关时产生的高频开关噪声将沿着电源线传播。


去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。  



干扰的耦合方式


干扰源产生的干扰信号是通过一定的耦合通道对电控系统发生电磁干扰作用的。干扰的耦合方式无非是通过导线、空间、公共线等作用在电控系统上。

分析下来主要有以下几种。

直接耦合:


这是干扰侵入最直接的方式,也是系统中存在最普遍的一种方式。


如干扰信号通过导线直接侵入系统而造成对系统的干扰。对这种耦合方式,可采用滤波去耦的方法有效地抑制电磁干扰信号的传入。

公共阻抗耦合:


这也是常见的一种耦合方式。常发生在两个电路的电流有共同通路的情况。


公共阻抗耦合有公共地和电源阻抗两种。防止这种耦合应使耦合阻抗趋近于零、使干扰源和被干扰对象间没有公共阻抗。

电容耦合:


又称电场耦合或静电耦合,是由于分布电容的存在而产生的一种耦合方式。


电磁感应耦合:

又称磁场耦合。是由于内部或外部空间电磁场感应的一种耦合方式,防止这种耦合的常用方法是对容易受干扰的器件或电路加以屏蔽。


辐射耦合:


电磁场的辐射也会造成干扰耦合,是一种无规则的干扰。这种干扰很容易通过电源线传到系统中去。


另当信号传输线较长时,它们能辐射干扰波和接收干扰波,称为大线效应。

漏电耦合:


所谓漏电耦合就是电阻性耦合。这种干扰常在绝缘降低时发生。


去藕电容一般容量比较大,也就是避免噪声耦合到其他部分的意思;旁路电容容量小,提供低阻抗的噪声回流路径。 


其实这种说法也可以算没有什么大错误。但是经过偶查阅了相关资料,才发现其实decouple和bypass从根本上来说没有任何区别,两者在称谓上可以互换。两者的作用低俗一点说:当电源用。

所谓噪声其实就是电源的波动,电源波动来自于两个方面:电源本身的波动,负载对电流需求变化和电源系统相应能力的差别带来的电压波动。而去藕和旁路电容都是相对负载变化引起的噪声来说。


所以他们两个没有必要做区分。而且实际上电容值的大小,数量也是有理论根据可循的,如果随意选择,可能会在某些情况下遇到去藕电容(旁路)和分布参数发生自激振荡的情况。


所以真正意义上的去藕和旁路都是根据负载和供电系 统的实际情况来说的。没有必要去做区分,也没有本质区别。

电容是板卡设计中必用的元件,其品质的好坏已经成为我们判断板卡质量的一个很重要的方面。


1、电容的功能和表示方法

由两个金属极,中间夹有绝缘介质构成。电容的特性主要是隔直流通交流,因此多用于级间耦合、滤波、去耦、旁路及信号调谐。


电容在电路中用“C”加数字表示,比如C8,表示在电路中编号为8的电容。


2、电容的分类

电容按介质不同分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容电解电容。


按极性分为:有极性电容和无极性电容。按结构可分为:固定电容,可变电容,微调电容。

3、电容的容量

电容容量表示能贮存电能的大小。


电容对交流信号的阻碍作用称为容抗,容抗与交流信号的频率和电容量有关,容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)。 

4、电容的容量单位和耐压

电容的基本单位是F(法),其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。


由于单位F 的容量太大,所以我们看到的一般都是μF、nF、pF的单位。


换算关系:1F=1000000μF,1μF=1000nF=1000000pF。

每一个电容都有它的耐压值,用V表示。


一般无极电容的标称耐压值比较高有:63V、100V、160V、250V、400V、600V、1000V等。


有极电容的耐压相对比较低,一般标称耐压值有:4V、6.3V、10V、16V、25V、35V、50V、63V、80V、100V、220V、400V等。

5、电容的标注方法和容量误差

电容的标注方法分为:直标法、色标法和数标法。


对于体积比较大的电容,多采用直标法。如果是0.005,表示0.005uF=5nF。如果是5n,那就表示的是5nF。


数标法一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是10的多少次方。如:102表示10x10x10 PF=1000PF,203表示20x10x10x10 PF。


色标法是沿电容引线方向,用不同的颜色表示不同的数字,第一、二种环表示电容量,第三种颜色表示有效数字后零的个数(单位为pF)。


颜色代表的数值为:黑=0、棕=1、红=2、橙=3、黄=4、绿=5、蓝=6、紫=7、灰=8、白=9。

电容容量误差用符号F、G、J、K、L、M来表示,允许误差分别对应为±1%、±2%、±5%、±10%、±15%、±20%。 

6、电容的正负极区分和测量


电容上面有标志的黑块为负极。在PCB上电容位置上有两个半圆,涂颜色的半圆对应的引脚为负极。也有用引脚长短来区别正负极长脚为正,短脚为负。

当我们不知道电容的正负极时,可以用万用表来测量。电容两极之间的介质并不是绝对的绝缘体,它的电阻也不是无限大,而是一个有限的数值,一般在1000兆欧以上。


电容两极之间的电阻叫做绝缘电阻或漏电电阻。只有电解电容的正极接电源正(电阻挡时的黑表笔),负端接电源负(电阻挡时的红表笔)时,电解电容的漏电流才小(漏电阻大)。反之,则电解电容的漏电流增加(漏电阻减小)。


这样,我们先假定某极为“+”极,万用表选用R*100或R*1K挡,然后将假定的“+”极与万用表的黑表笔相接,另一电极与万用表的红表笔相接,记下表针停止的刻度(表针靠左阻值大),对于数字万用表来说可以直接读出读数。


然后将电容放电(两根引线碰一下),然后两只表笔对调,重新进行测量。两次测量中,表针最后停留的位置靠左(或阻值大)的那次,黑表笔接的就是电解电容的正极。 


7、电容使用的一些经验及四个误区


【一些经验】


在电路中不能确定线路的极性时,建议使用无极电解电容。通过电解电容的纹波电流不能超过其充许范围。


如超过了规定值,需选用耐大纹波电流的电容。电容的工作电压不能超过其额定电压。


在进行电容的焊接的时候,电烙铁应与电容的塑料外壳保持一定的距离,以防止过热造成塑料套管破裂。并且焊接时间不应超过10秒,焊接温度不应超过260摄氏度。 


【四个误区】


(1)电容容量越大越好


很多人在电容的替换中往往爱用大容量的电容。我们知道虽然电容越大,为IC提供的电流补偿的能力越强。


且不说电容容量的增大带来的体积变大,增加成本的同时还影响空气流动和散热。关键在于电容上存在寄生电感,电容放电回路会在某个频点上发生谐振。


在谐振点,电容的阻抗小。因此放电回路的阻抗最小,补充能量的效果也最好。但当频率超过谐振点时,放电回路的阻抗开始增加,电容提供电流能力便开始下降。


电容的容值越大,谐振频率越低,电容能有效补偿电流的频率范围也越小。从保证电容提供高频电流的能力的角度来说,电容越大越好的观点是错误的,一般的电路设计中都有一个参考值的。


(2)同样容量的电容,并联越多的小电容越好


耐压值、耐温值、容值、ESR(等效电阻)等是电容的几个重要参数,对于ESR自然是越低越好。


ESR与电容的容量、频率、电压、温度等都有关系。当电压固定时候,容量越大,ESR越低。在板卡计中采用多个小电容并连多是出与PCB空间的限制,这样有的人就认为,越多的并联小电阻,ESR越低,效果越好。


理论上是如此,但是要考虑到电容接脚焊点的阻抗,采用多个小电容并联,效果并不一定突出。

(3)ESR越低,效果越好


结合我们上面的提高的供电电路来说,对于输入电容来说,输入电容的容量要大一点。相对容量的要求,对ESR的要求可以适当的降低。


因为输入电容主要是耐压,其次是吸收MOSFET的开关脉冲。对于输出电容来说,耐压的要求和容量可以适当的降低一点。


ESR的要求则高一点,因为这里要保证的是足够的电流通过量。但这里要注意的是ESR并不是越低越好,低ESR电容会引起开关电路振荡。而消振电路复杂同时会导致成本的增加。


板卡设计中,这里一般有一个参考值,此作为元件选用参数,避免消振电路而导致成本的增加。


(4)好电容代表着高品质


“唯电容论”曾经盛极一时,一些厂商和媒体也刻意的把这个事情做成一个卖点。在板卡设计中,电路设计水平是关键。


和有的厂商可以用两相供电做出比一些厂商采用四相供电更稳定的产品一样,一味的采用高价电容,不一定能做出好产品。


衡量一个产品,一定要全方位多角度的去考虑,切不可把电容的作用有意无意的夸大。




没看过瘾?
关注它试试

软件干货合集关注它


本文编辑转载 来源: 8号线攻城狮 ,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。 如涉及作品内容、版权和其它问题,请在30日内与本公众号联系,我们将在第一时间删除内容 ! [声明]本站文章版权归塬作者所有内容为作者个人观点本站只提供参考并不构成任何应用建议。

关注公众号『凡亿PCB』,后台回复对应关键词封装规范、模电、PCB规范、开关电源、凡亿知新、直播汇总...,领对应【干货资料包
【技术文章 这些PCB专业术语,你都get到了吗?
【技术文章】反激式电源工作原理是怎么回事,它的变压器是真正的变压器吗
【干货合集】收藏 | PCB生产工艺流程大合集
干货资料 】104条PCB布局布线技巧问答,助你画板无忧!
【技术干货】PADS学会这个就够了?无模命令整理大全
●【资料领取】70G硬件设计资料汇总免费送


觉得内容不错的话,点个在看呗




凡亿PCB 分享高速PCB设计、硬件设计、信号仿真、天线射频技术,提供技术交流、资料下载、综合提升电子应用开发能力!创立“凡亿教育”,致力做电子工程师的梦工厂,旨在赋能大学生、初中级电子工程师,倾力打造电子设计精品教育,逐步发展成系统
评论 (0)
  • 六西格玛首先是作为一个量度质量水平的指标,它代表了近乎完美的质量的水平。如果你每天都吃一个苹果,有一间水果店的老板跟你说,他们所卖的苹果,质量达到六西格玛水平,换言之,他们每卖一百万个苹果,只会有3.4个是坏的。你算了一下,发现你如果要从这个店里买到一个坏苹果,需要805年。你会还会选择其他店吗?首先发明六西格玛这个词的人——比尔·史密斯(Bill Smith)他是摩托罗拉(Motorloa)的工程师,在追求这个近乎完美的质量水平的时候,发明了一套方法模型,开始时是MAIC,后来慢慢演变成DMA
    优思学院 2025-03-27 11:47 191浏览
  • 在智能语音产品的开发过程中,麦克风阵列的选型直接决定了用户体验的优劣。广州唯创电子提供的单麦克风与双麦克风解决方案,为不同场景下的语音交互需求提供了灵活选择。本文将深入解析两种方案的性能差异、适用场景及工程实现要点,为开发者提供系统化的设计决策依据。一、基础参数对比分析维度单麦克风方案双麦克风方案BOM成本¥1.2-2.5元¥4.8-6.5元信噪比(1m)58-62dB65-68dB拾音角度全向360°波束成形±30°功耗8mW@3.3V15mW@3.3V典型响应延迟120ms80ms二、技术原
    广州唯创电子 2025-03-27 09:23 214浏览
  • 文/陈昊编辑/cc孙聪颖‍2025 年,作为中国实施制造强国战略第一个十年计划的关键里程碑,被赋予了极为重大的意义。两会政府工作报告清晰且坚定地指出,要全力加速新质生产力的发展进程,推动传统产业全方位向高端化、智能化与绿色化转型。基于此,有代表敏锐提议,中国制造应从前沿技术的应用切入,逐步拓展至产业生态的构建,最终延伸到提升用户体验的维度,打出独树一帜、具有鲜明特色的发展牌。正是在这样至关重要的时代背景之下,于 AWE 2025(中国家电及消费电子博览会)这一备受瞩目的舞台上,高端厨房的中国方案
    华尔街科技眼 2025-03-25 16:10 97浏览
  • 长期以来,智能家居对于大众家庭而言就像空中楼阁一般,华而不实,更有甚者,还将智能家居认定为资本家的营销游戏。商家们举着“智慧家居、智慧办公”的口号,将原本价格亲民、能用几十年的家电器具包装成为了高档商品,而消费者们最终得到的却是家居设备之间缺乏互操作性、不同品牌生态之间互不兼容的碎片化体验。这种早期的生态割裂现象致使消费者们对智能家居兴趣缺失,也造就了“智能家居无用论”的刻板印象。然而,自Matter协议发布之后,“命运的齿轮”开始转动,智能家居中的生态割裂现象与品牌生态之间的隔阂正被基于IP架
    华普微HOPERF 2025-03-27 09:46 156浏览
  • 在当今竞争激烈的工业环境中,效率和响应速度已成为企业制胜的关键。为了满足这一需求,我们隆重推出宏集Panorama COOX,这是Panorama Suite中首款集成的制造执行系统(MES)产品。这一创新产品将Panorama平台升级为全面的工业4.0解决方案,融合了工业SCADA和MES技术的双重优势,帮助企业实现生产效率和运营能力的全面提升。深度融合SCADA与MES,开启工业新纪元宏集Panorama COOX的诞生,源于我们对创新和卓越运营的不懈追求。通过战略性收购法国知名MES领域专
    宏集科技 2025-03-27 13:22 238浏览
  • WT588F02B是广州唯创电子推出的一款高性能语音芯片,广泛应用于智能家电、安防设备、玩具等领域。然而,在实际开发中,用户可能会遇到烧录失败的问题,导致项目进度受阻。本文将从下载连线、文件容量、线路长度三大核心因素出发,深入分析烧录失败的原因并提供系统化的解决方案。一、检查下载器与芯片的物理连接问题表现烧录时提示"连接超时"或"设备未响应",或烧录进度条卡顿后报错。原因解析接口错位:WT588F02B采用SPI/UART双模通信,若下载器引脚定义与芯片引脚未严格对应(如TXD/RXD交叉错误)
    广州唯创电子 2025-03-26 09:05 154浏览
  • 在电子设计中,电磁兼容性(EMC)是确保设备既能抵御外部电磁干扰(EMI),又不会对自身或周围环境产生过量电磁辐射的关键。电容器、电感和磁珠作为三大核心元件,通过不同的机制协同作用,有效抑制电磁干扰。以下是其原理和应用场景的详细解析:1. 电容器:高频噪声的“吸尘器”作用原理:电容器通过“通高频、阻低频”的特性,为高频噪声提供低阻抗路径到地,形成滤波效果。例如,在电源和地之间并联电容,可吸收电源中的高频纹波和瞬态干扰。关键应用场景:电源去耦:在IC电源引脚附近放置0.1μF陶瓷电容,滤除数字电路
    时源芯微 2025-03-27 11:19 206浏览
  • 家电,在人们的日常生活中扮演着不可或缺的角色,也是提升人们幸福感的重要组成部分,那你了解家电的发展史吗?#70年代结婚流行“四大件”:手表、自行车、缝纫机,收音机,合成“三转一响”。#80年代随着改革开放的深化,中国经济开始飞速发展,黑白电视机、冰箱、洗衣机这“新三件”,成为了人们对生活的新诉求。#90年代彩电、冰箱、全自动洗衣机开始大量进入普通家庭,快速全面普及,90年代末,家电产品实现了从奢侈品到必需品的转变。#00年代至今00年代,随着人们追求高品质生活的愿望,常用的电视机、洗衣机等已经远
    启英AI平台 2025-03-25 14:12 110浏览
  • ​2025年3月27日​,贞光科技授权代理品牌紫光同芯正式发布新一代汽车安全芯片T97-415E。作为T97-315E的迭代升级产品,该芯片以大容量存储、全球化合规认证、双SPI接口协同为核心突破,直击智能网联汽车"多场景安全并行"与"出口合规"两大行业痛点,助力车企抢占智能驾驶与全球化市场双赛道。行业趋势锚定:三大升级回应智能化浪潮1. 大容量存储:破解车联网多任务瓶颈随着​车机功能泛在化​(数字钥匙、OTA、T-BOX等安全服务集成),传统安全芯片面临存储资源挤占难题。T97-415E创新性
    贞光科技 2025-03-27 13:50 189浏览
  • 汽车导航系统市场及应用环境参照调研机构GII的研究报告中的市场预测,全球汽车导航系统市场预计将于 2030年达到472亿美元的市场规模,而2024年至2030年的年复合成长率则为可观的6.7%。汽车导航系统无疑已成为智能汽车不可或缺的重要功能之一。随着人们在日常生活中对汽车导航功能的日渐依赖,一旦出现定位不准确或地图错误等问题,就可能导致车主开错路线,平白浪费更多行车时间,不仅造成行车不便,甚或可能引发交通事故的发生。有鉴于此,如果想要提供消费者完善的使用者体验,在车辆开发阶段便针对汽车导航功能
    百佳泰测试实验室 2025-03-27 14:51 249浏览
  • 案例概况在丹麦哥本哈根,西门子工程师们成功完成了一项高安全设施的数据集成项目。他们利用宏集Cogent DataHub软件,将高安全设施内的设备和仪器与远程监控位置连接起来,让技术人员能够在不违反安全规定、不引入未经授权人员的情况下,远程操作所需设备。突破OPC 服务器的远程连接难题该项目最初看似是一个常规的 OPC 应用:目标是将高安全性设施中的冷水机(chiller)设备及其 OPC DA 服务器,与远程监控站的两套 SCADA 系统(作为 OPC DA 客户端)连接起来。然而,在实际实施过
    宏集科技 2025-03-27 13:20 137浏览
  • 在嵌入式语音系统的开发过程中,广州唯创电子推出的WT588系列语音芯片凭借其优异的音质表现和灵活的编程特性,广泛应用于智能终端、工业控制、消费电子等领域。作为该系列芯片的关键状态指示信号,BUSY引脚的设计处理直接影响着系统交互的可靠性和功能拓展性。本文将从电路原理、应用场景、设计策略三个维度,深入解析BUSY引脚的技术特性及其工程实践要点。一、BUSY引脚工作原理与信号特性1.1 电气参数电平标准:输出3.3V TTL电平(与VDD同源)驱动能力:典型值±8mA(可直接驱动LED)响应延迟:语
    广州唯创电子 2025-03-26 09:26 224浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦