欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 1105621549
高可靠新能源行业顶尖自媒体
在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注微信公众号:电力电子技术与新能源(Micro_Grid),论坛:www.21micro-grid.com,建立的初衷就是为了技术交流,作为一个与产品打交道的技术人员,市场产品信息和行业技术动态也是必不可少的,希望大家不忘初心,怀有一颗敬畏之心,做出更好的产品!
电力电子技术与新能源论坛
www.21micro-grid.com
小编推荐值得一看的书单电力电子技术与新能源推荐书单
The Power MOSFET 应用手册
[视频]反激电路Flyback
车用永磁同步电机控制及弱磁方法
[视频]IGBT模块技术参数详解
[视频]英飞凌双脉冲实验教具使用说明
碳化硅在光伏逆变器中的应用-阳光电源
华为精华资料—终端互连PCB设计规范分享
复旦电赛培训_辅助电源_刘祖望_电力电子技术与新能源
环路指导书LOOP Training
[视频]浙大碳化硅技术发展与应用介绍
前言:
本文主要是对一个LLC变压器的绕组和结构进行思考:
当选择EI3027的磁芯作为12V70A的变压器时,我就很想知道这款变压器的结构和绕线。所以我砸开了一款,通过几张照片来对其一探究竟:
1、首先是副边绕组的设计,副边绕组采用0.8mm厚度,宽度5mm,其横截面积是4mm^2的成型铜箔。在暂时不考虑集肤效应,对副边绕组进行直流电阻测试,其直流DCR = 0.62m ohm 。绕组采用一根铜条一体成型,分别是两个绕组的引出线和中间抽头共用脚,可见下图所示。
(变压器副边绕组结构)
2、通过拆解可以看到副边和原边绕组的结构,原边绕组绕在骨架的最里层。然后是副边绕组的铜条。对于绕组结构来说,这应该算不上是“三明治绕法”。只能算是普通的绕法。但由于原边和副边都只有一层,所以从等效的角度来看,绕组的层数也只能算一层,即一层原边一层副边。可见下图 。
(变压器结构)
3,原边是采用0.7mm的三层绝缘线,副边是0.8mm厚度的铜带。现在从趋肤深度和临近效应的角度考虑一下这个结构的交流耗损。原副边的等效层数都是一层,所以当利用DOWLL曲线分析就特别方便,因为LLC的原边电流波形就是一个正弦电流,完全符合Dowll基于正弦电流的分析依据。根据150KHZ计算出来的集肤深度是0.228mm,副边绕组等效的厚度是0.62mm。通过计算,实际选择线径是趋肤深度的2.72倍。根据DOWLL曲线可以得知,RAC/RDC = 2.8倍。实际测量原边绕组的直流电阻为:40 ohm,所以得到交流阻抗为112m ohm。然后根据原边电流有效值,计算得到原边绕组的耗损为:3.6W。
(应用于正弦波的Dowll曲线)
4,副边绕组的耗损:副边采用0.8mm厚度的铜箔,其等效厚度就是0.8mm。计算出来和趋肤深度的比例为3.5。 但是副边绕组的电流波形,不是完整的的正弦波形。也就是不能完全按Dowll曲线来照搬,需要做一点改变。在《应用于电力电子技术的变压器和电感器 -- 理论、设计和应用》一书中给出了这种电流波形的计算和方法。可参见下图,第二行。
( 应用于电力电子技术的变压器和电感器 -- 理论、设计和应用 第137页)
按书里的对于非标准正弦电流波形的计算方法,要对其进行波形进行傅里叶分解。因为任意形状的波形都可以用傅里叶分解,得到基波和各种高次的正弦余弦组合起来。然后还考虑各次谐波的引起耗损,然后在把这些累加起来得到总耗损。经过各种变换,其详细推导过程见该书第134页,作者给出了一个三维的曲线图,用来快速选型。其中P是绕组层数,D 是绕组实际厚度和趋肤深度之比, V 是等效阻抗Rrff/Rdc。然后就可以根据你的变压器的实际层数,实际绕组直流阻抗,开关频率,来得到等效交流阻抗。
根据实际参数, 得到等效交流阻抗是直流的2.045倍。因此可以计算得到副边等效的阻抗为 0.62*2.045 = 1.2679m ohm 。根据副边电流有效值为52A,计算可以得到耗损为3.5W损耗。
然后根据匝数算磁芯损耗,就不多说了。这里我主要参考了《应用于电力电子技术的变压器和电感器 -- 理论、设计和应用》这本书中关于Dowll曲线应用。
小结:变压器的绕组损耗计算一直是个难点,特别是开关电源中电流波形根本不是正弦波,如果按Dowll曲线分析,那肯定是会有较大的误差的。但这本书中提到了这个算法,我也不敢在应用中保证绝对正确,但是能为我们在迷茫中找到一条道路。变压器的设计,总是要经过的实际测试,如果能把实际测试和理论结合起来那就太妙了。
在实际中这种也用的挺多:
Matlab代码:
%problem 6.7 Plot of Reff/Rdelta versus Delta for various numbers of layers
close all
clear all
clc
Io = 1;
D = 0.5;
Idc = Io*2*D / pi;
Irms = Io*sqrt(D/2);
for p = [1:10]
u=1;
for delta = [0.01:0.04:3.5];
sum = 0;
for n = [1:13]
deltan = delta*sqrt(n);
kpn = deltan*((sinh(2*deltan)+sin(2*deltan))/(cosh(2*deltan)-cos(2*deltan))+2*(p^2-1)/3*(sinh(deltan)-sin(deltan))/(cosh(deltan)+cos(deltan)));
In = Io/sqrt(2)*(sinc(n*D/2))^2;
y = kpn*In^2;
sum = sum+y;
end
R = (Idc^2+sum)/(delta*Irms^2);
V(p,u) = R;
De(u)= delta;
u=u+1;
end
end
mesh(De,1:10,V)
title('Figure 6.11 Plot of Reff/Rdelta versus Delta for various numbers of layers')
xlabel('D')
ylabel('p')
zlabel('V')
axis([0 3.5 1 10 0 100])
grid off
hold on
for p = [0.1:0.1:10]
u=1;
for delta = [0.01:0.01:3.5];
sum = 0;
for n = [1:13]
deltan = delta*sqrt(n);
kpn = deltan*((sinh(2*deltan)+sin(2*deltan))/(cosh(2*deltan)-cos(2*deltan))+2*(p^2-1)/3*(sinh(deltan)-sin(deltan))/(cosh(deltan)+cos(deltan)));
In = Io/sqrt(2)*(sinc(n*D/2))^2;
y = kpn*In^2;
sum = sum+y;
end
R = (Idc^2+sum)/(delta*Irms^2);
V(round(p*10),u) = R;
De(u)= delta;
u=u+1;
end
end
for p=0.1:0.1:10
[krmin,delopt]=min(V(round(p*10),:));
A(round(p*10))=delopt/100;
B(round(p*10))=p;
C(round(p*10))=krmin+0.1;
end
plot3(A,B,C,'k','LineWidth',2)
axis([0 3.5 0 10 0 100])
hold on
参考文献:
1、应用于电力电子技术的变压器和电感器 -- 理论、设计和应用
2、精通开关电源设计 第二版
文章首尾冠名广告正式招商,功率器件,SiC,GaN,数字电源,新能源厂家都可合作,有意者加微信号1768359031详谈。
说明:本文来源网络;文中观点仅供分享交流,不代表本公众号立场,转载请注明出处,如涉及版权等问题,请您告知,我们将及时处理。
Please clik the advertisement and exit
重点
如何下载 《磁性元件_电感变压器》高清PDF电子书
点击文章底部阅读原文,访问电力电子技术与新能源论坛(www.21micro-grid.com)下载!
或者转发文章到朋友圈不分组不屏蔽,然后截图发给小编(微信:1768359031),小编审核后将文章发你!
推荐阅读:点击标题阅读
LLC_Calculator__Vector_Method_as_an_Application_of_the_Design
自己总结的电源板Layout的一些注意点
High_Frequency_Transformers_for_HighPower_Converters_Materials
华为电磁兼容性结构设计规范V2.0
Communication-less Coordinative Control of Paralleled Inverters
Soft Switching for SiC MOSFET Three-phase Power Conversion
Designing Compensators for Control of Switching Power Supplies
100KHZ 10KW Interleaved Boost Converter with full SiC MOSFET
华为-单板热设计培训教材
看完有收获?请分享给更多人
公告:
限于篇幅,已做删减,获取原文,加小编微信号(QQ号)1768359031,请注明研究方向或从事行业(比如光伏逆变器硬件),小编对电力电子技术与新能源及微电网的市场发展很看好,对其关键技术很感兴趣,如有技术问题,欢迎加小编微信,共同讨论。另,本公众号也有微信群,如有需要,备注加群,谢谢!
更多精彩点下方“阅读原文”!
点亮“在看”,小编工资涨1毛!