2025年汽车行业报告汇总(点击进入)
慧敏老师的新书《智能座舱:架构、原理与车规级芯片》终于出版了!在实际的项目开发过程中,智能座舱系统架构师需要对系统需求进行技术可行性评估。来自传统汽车行业的系统架构师往往对座舱SoC知识缺乏深层次的了解,难以准确评估座舱所需的SoC的能力。而那些计划进入智能座舱行业的初创半导体公司的系统架构师,则可能对汽车电子相关背景知识了解不足,难以将消费类电子技术与车载电子技术有效结合,从而设计出适合的座舱SoC。
由于市面上缺乏通俗易懂的智能座舱技术参考书,初学者在面对复杂的技术名词和多样化的应用需求时,往往感到困惑,无从下手。正是基于上述种种原因,作者决定撰写本书。
本书注重剖析智能座舱的多个子系统、基础软件及应用/服务的原理与架构,以及底层技术SoC的原理与实践。
(下方是购书链接,享全网最低价)
本文节选自此书。摘录几章目录供读者参考。
第3章 车载总线技术 33
3.1 传统车载总线 33
3.1.1 CAN/CAN-FD总线 34
3.1.2 LIN总线 35
3.1.3 FlexRay总线 38
3.1.4 MOST总线 39
3.2 车载以太网 40
3.2.1 车载以太网的定义 40
3.2.2 车载以太网的架构 41
3.2.3 车载以太网的特点 42
3.3 车载网络拓扑设计 45
3.4 本章小结 47
第4章 高速视频传输技术 48
4.1 高速视频传输需求 48
4.1.1 数据传输需求 48
4.1.2 车载总线的限制 50
4.1.3 应对策略 50
4.2 高速视频传输技术的原理 52
4.2.1 LVDS 52
4.2.2 CML 53
4.2.3 传输线缆 55
4.3 FPD-Link技术 56
4.3.1 特色模块 57
4.3.2 应用范例 59
4.4 GMSL技术 60
4.5 MIPI A-PHY技术 63
4.6 ASA技术 65
4.7 其他SerDes技术 66
4.8 本章小结 66
AI大模型的飞速发展也推动了汽车智能座舱技术创新,优化和改进智能座舱的功能和性能,为用户带来更加丰富、智能、个性化的体验。
目前,车企研发智能座舱大模型的主要模式有两种:自主研发与合作研发。其中,新势力品牌蔚小理以自研为主,自主品牌车企多选择与大模型厂商合作研发。
未来,随着AI Agent的应用,汽车智能座舱一定会获得更加情感化和拟人化的交互体验。
智能座舱作为汽车市场下个阶段的竞争焦点,各主机厂正试图通过产品差异化来占据市场优势。用户对汽车座舱功能的需求维度也在不断拓展,智能座舱开始成为消费者日常生活的一个延伸,一个可移动的生活空间。未来的智能座舱将更多地兼顾“内容”、“服务”甚至是“主动智能”的升级。
那么,对于即将在未来投入应用的前沿技术,以及那些已经在实践中得到应用的技术成果,智能座舱领域又有着怎样的期待和展望呢?
最厉害的科幻小说家凡尔纳,他的才能在于,实际上是在科学技术所容许的范围里,根据科学发展的规律与必然的趋势做出了种种在当时是奇妙无比的构想。
接下来我们先从科幻大片的常见角度——虚拟现实方面,也根据已有的技术发展趋势,来做一些科学的预测。
虚拟现实(VR)和增强现实(AR)技术,一度非常火爆。VR技术给用户提供一个交互式的虚拟三维空间,通过感知单元提供视觉,触觉,听觉等感官的模拟,让人们进入虚拟世界。VR需要用户使用特定的头盔形成一个密闭的虚拟空间。AR技术则不然,它是以现实世界为主体,通过全息投影镜片把显示内容与现实世界叠加。戴上AR眼镜,用户将可以接收与真实世界相关的数据化信息。
虚拟现实技术将为智能座舱提供更强大的沉浸式体验。为了支持虚拟现实和增强现实技术,智能座舱需要满足如下的电子技术要求。
虚拟现实和增强现实技术是通过人的眼睛,营造一个通过视觉而感知的虚拟世界。因此,出色的图形渲染能力必然是VR和AR技术的首选要求。对于人眼的感知能力而言,当显示屏幕的像素密度达到60PPD(Pixel Per Degree,即每度视场角包含的像素数目)时,人眼便无法分辨出单个的像素颗粒,这种状态通常被称为“视网膜屏”效果。若一个VR/AR眼镜的视场角(FOV)达到100°,那么为了在这个视场范围内都达到视网膜屏的效果,单眼的水平方向就需要至少6000个像素(这里假设视场是水平方向的,且PPD均匀分布)。另一方面,所谓的4K屏幕,其分辨率为3840*2160(UHD, 超高清分辨率),双眼就要求达到2*3840*2160的分辨率。因此,分辨率越高,用户观看VR/AR的体验效果就越好。
同时,由于VR/AR的显示屏距离眼球太近,为了避免用户产生眩晕不适,我们需要调节镜片与眼部的瞳距,并提升刷新率。针对VR/AR眼镜的显示帧率,最好是能达到120帧/秒。这个图形渲染的要求已经超过了当前手机SoC芯片的显示分辨率。因此,智能座舱芯片要想能使VR和AR的体验效果达到最佳,就要提升CPU、GPU、VPU、DPU以及DDR带宽和显示接口的能力。一般SoC芯片采用的MIPI DSI接口无法满足要求,需要考虑使用DP或者HDMI接口。
VR/AR技术为用户构建了一个沉浸式的虚拟世界,而为了实现真正的交互和沉浸感,用户与系统的交互方式显得尤为重要。简单的信息接收已不能满足现代VR/AR体验的需求,用户期望能够更自然地与系统沟通。
目前,手部交互和语音交互是两种主流的人机沟通方式。用户可以通过VR手柄、游戏摇杆等传统设备与系统互动,这种方式虽然经典但稍显局限。为了更贴近真实世界的交互体验,穿戴式设备如手套、指环等逐渐受到青睐,它们为用户提供了更为直观和自然的操作方式。
而手势识别技术的兴起,更是为VR/AR交互带来了新的革命。借助舱内摄像头,用户的手部动作被精准捕捉,进而实现3D手势识别。这种交互方式无需额外的物理设备,让用户能够更自由地与系统沟通,大大增强了沉浸感和真实感。
当然,未来的交互方式还有巨大的探索空间。随着脑机接口等前沿科学研究的深入,我们或许可以期待一种更为直接和高效的交互方式的出现。那时,用户只需通过意念即可与系统沟通,这将为VR/AR技术带来前所未有的变革。特斯拉的脑机接口人体实验,已为智能座舱的探索之路增添了浓墨重彩的一笔。
座舱内的虚拟现实技术,与普通VR/AR眼镜相比,具有得天独厚的优势,因为它能充分整合和利用车载传感器的强大感知能力。举例来说,架构师可以巧妙地将车外摄像头捕捉到的沿途美丽风景实时投射到VR/AR眼镜中,使用户能够在享受虚拟世界的同时,也不错过旅途中的任何一处迷人景致,从而实现旅行拍摄和记录的独特功能。
更有趣的是,用户在虚拟世界中的刺激冒险也能被投射到车载屏幕上,让家人和朋友一起分享游戏的欢乐和紧张刺激。这种互动不仅增强了用户与家人之间的情感联系,也让虚拟现实的体验更加丰富多彩。
而为了进一步提升沉浸感,汽车的空气悬挂系统、座椅的通风和按摩功能、空调和香氛的控制系统,以及支持环绕立体声的音频系统,都被巧妙地融入到虚拟现实体验中。这些智能系统的联动,让用户在虚拟世界中遨游时,能够感受到更为真实和震撼的视听触感,从而获得前所未有的沉浸式体验。
智能座舱在VR/AR应用中的计算能力是其核心优势之一。为了减少用户戴上VR/AR设备后可能出现的眩晕感,智能座舱的计算单元会进行一系列精密的计算和补偿操作。
例如,智能座舱的计算单元能够通过摄像头追踪用户的眼球注视焦点,然后计算并渲染针对用户的显示区域。这一功能对于调整VR/AR内容的呈现方式至关重要,可以确保用户所看到的内容始终与其视线方向保持一致,从而减少视觉上的不适感。
为了提供更加自然的虚拟现实体验,智能座舱需要实时计算VR/AR设备的6Dof(6 Degrees of Freedom,六个自由度)空间自由度。这意味着设备可以在X-Y-Z三个轴方向上转动,具体分为YAW(绕Y轴)、Pitch(绕X轴)、Roll(绕Z轴)的旋转,再叠加空间运动的定位信息(在三个轴方向上的移动),从而实现6个自由度的精确控制。通过这种计算,智能座舱能够精确地知道设备在空间中的位置和朝向,进而对显示屏投射进行运动补偿,以消除因设备移动或用户头部运动导致的画面抖动或错位,从而大大减少用户的不适感觉。
下图所展示的是一个面向未来的AR眼镜应用场景,其中,AR眼镜被用于显示导航信息。
AR眼镜显示导航信息
报告订购咨询
电话:18676695257
邮件:service@yilanzhong.com
✕
✕
- 扫码关注《一览众车》
- 领域:汽车及零部件、电动汽车、三电、智能汽车、汽车电子