了解LDO中的噪声和PSRR

摩尔学堂 2025-03-26 15:21

在本文中,我们将介绍低压差 (LDO) 稳压器中噪声和电源抑制比 (PSRR) 的影响。让我们简单讨论一下什么是 LDO。

低压差稳压器

低压差或 LDO 稳压器是一种直流线性稳压器,即使提供给它的输入电压几乎等于输出电压,也可以通过它控制输出电压。LDO 有两个组件 - 功率 FET 和差分放大器(误差放大器)。LDO的配置如下图所示:

低压差稳压器 (LDO) 中的噪声

低压差 (LDO) 稳压器中的噪声源可分为两大类,即内在噪声源和外在噪声源。LDO 的固有噪声有两个主要来源:
    1. 内部参考电压。
    2.误差放大器。

然而,外部噪声就像喷气式飞机发出的噪声一样,是从电路外部的源传递的。

为了获得 15 μA 或更低的静态电流,现代 LDO 使用几十纳安的内部偏置电流。

降低 LDO 的噪声

降低 LDO 噪声的两种主要方法是:
    1. 对基准进行滤波
    2. 降低误差放大器的噪声增益

在一些 LDO 中,使用外部电容器来过滤参考电压。事实上,为了达到低噪声条件,许多所谓的超低噪声 LDO 需要外部噪声衰减电容器。不幸的是,固定输出 LDO 无法降低输出噪声,因为没有进入反馈节点的权利。如果误差放大器对噪声的贡献大于基准电压源的贡献,则可以通过降低误差放大器的噪声增益来降低 LDO 的总体噪声。 

判断误差放大器是否是主要噪声源的唯一方法是比较特定 LDO 的固定版本和可变版本的噪声。如果固定 LDO 的噪声量小于可变 LDO,那么我们可以说误差放大器是主要噪声源。 

该图显示了一个 2.5 V 输出可修改 LDO,其中 R1、R2、R3 和 C1 为外部组件。

R3 用于将放大器的高频增益设置为高达 1.5× 至 2×。而C1用于将降噪系统(C1、R1和R3)的低频零点设置在10Hz至100Hz之间,以确保噪声降低至1/f。 

降噪 (NR) 网络对高压自适应 LDO 噪声频谱密度的结果如下图所示。

从上图中可以看出,20 Hz 至 2 kHz 之间的噪声性能提高了约三倍(约 10 dB)。 

LDO 中的电源抑制比

PSRR 代表“电源抑制比”,由于集成度的提高,它已成为现代片上系统 (SoC) 设计中越来越重要的参数。

PSRR 是两个传递函数之间的比率:
    • 电源节点到输出节点的传递函数,即(Asupply(ω))
    • 输入节点到输出节点A(ω) 的传递函数。A(ω)也称为开环传递函数。

在哪里,

          1/ Asupply(ω) 是电源增益的倒数,称为 PSR。 

从上式可以明显看出,PSRR与A(ω)成正比,与Asupply(ω)成反比。因此,如果 Asupply(ω) 减小并且开环增益 A(ω) 增大,PSRR 将增大。PSRR 基本上是 LDO 抑制输入侧出现纹波的能力。在理想的 LDO 中,直流频率将是唯一的输出电压。然而,由于高频下出现小尖峰,误差放大器并不具有完美的功能。考虑纹波,PSRR 表示如下:
PSRR=20 xlog RippleinputRippleoutput 

实际例子

LDO 具有:

           电源抑制比=55分贝 

           频率= 1 MHz 

           输入纹波 = 1mV

它可以将该频率下的 1 mV 衰减至输出端的 1.78 µV。因此,PSRR 增加了 6dB,相当于衰减增加了 2 倍。 

大多数 LDO 在较低频率(通常为 10 Hz – 1 kHz)下具有相对较高的 PSRR。在宽频带上具有高 PSRR 的 LDO 可以抑制非常高频的噪声,就像开关产生的噪声一样。 
PSRR 会随着频率、温度、电流、输出电压和电压差等参数的变化而波动。PSRR 应为负值,因为它用于计算抑制。然而,该图将其显示为正数,因此图中顶部的数字表示更高的噪声抑制。

测量 LDO 的 PSRR

测量 LDO 的 PSRR 的方法有多种:


    1.使用LC求和节点测量PSRR:

           测量LDO PSRR的基本方法如下图所示。

           在此方法中,两个电压(直流和交流)相加并施加在 LDO 的输入端子上。工作点偏置电压为 VDC,VAC 为噪声源。上图中,电容C用于防止VAC短路VDC,电感L用于防止VDC短路噪声源。

           测量低频 PSRR 取决于由电感器 L 和电容器 C 创建的高通滤波器。该滤波器的 3dB 点由下式确定:                  

           当获得低于 3dB 点的频率时,测量 PSRR 变得困难并且它们开始减弱。

    2. 使用求和放大器测量 PSRR

           为了获得改进的 PSRR 测量,描述了另一种方法,其中使用高带宽放大器作为求和节点来插入信号,从而在 VAC 和 VDC 之间提供隔离。该方法如下图所示:

         在此方法中,PSRR 是在空载条件下测量的。 

使用此方法测量 PSRR 时必须牢记以下因素。
1、输入电容可能是高速放大器进入不稳定状态的原因;在测量 PSRR 之前应移除该电容器。
2. 为了减少电感效应,应使用示波器或网络分析仪同时测量 Vin 和 Vout。
3. 长电线会增加电感并影响结果。这就是为什么测试装置不应该有任何长电线。
4. 选择交流和直流输入值时应考虑以下条件:
              • VAC(最大值)+ VDC < LDO 的 VABS(最大值)
              • VDC – VAC > LDO 的 VUVLO

       如果满足以下条件,将获得最佳结果:
              • VDC–VAC > Vout + Vdo + 0.5
      其中: 

                   Vout 是 LDO 的输出电压,
                   Vdo 是工作点处的特定压差电压。
5. 放大器的结果将开始衰减施加到 LDO 的极高频率的 VAC 信号。
6. MOSFET 输出阻抗与漏极电流成反比,因此导致 LDO 的开环输出阻抗减小,负载电流增大,增益降低。



5月15日-16日将在上海举办一期高级电源管理芯片设计课程,本次课程将深入讲解电源管理电路中最常见的模块——LDO(线性稳压器)和DC-DC转换器的相关知识、设计技巧及前沿探索。内容涵盖模拟LDO、数字LDO、电感型DC-DC、电容型DC-DC以及当前备受关注的混合型DC-DC转换器。

>>>点击图片了解课程详情!

图片

图片
---------------------------------------------

ISSCC2025PaperShort CoursePPTTutorial

图片

ISSCC2025   

 2025 

30
使

1、深入理解SerDes(Serializer-Deserializer)之一

2、深入理解SerDes(Serializer-Deserializer)之二

3、科普:深入理解SerDes(Serializer-Deserializer)之三

4、资深工程师的ESD设计经验分享

5、干货分享,ESD防护方法及设计要点!

6、科普来了,一篇看懂ESD(静电保护)原理和设计!

7、锁相环(PLL)基本原理 及常见构建模块

8、当锁相环无法锁定时,该怎么处理的呢?

9、高性能FPGA中的高速SERDES接口

10、什么是毫米波技术?它与其他低频技术相比有何特点?

11、如何根据数据表规格算出锁相环(PLL)中的相位噪声

12、了解模数转换器(ADC):解密分辨率和采样率

13、究竟什么是锁相环(PLL)

14、如何模拟一个锁相环

15、了解锁相环(PLL)瞬态响应

16、如何优化锁相环(PLL)的瞬态响应

17、如何设计和仿真一个优化的锁相环

18、锁相环(PLL) 倍频:瞬态响应和频率合成

19、了解SAR ADC

20、了解 Delta-Sigma ADC

21、什么是数字 IC 设计?

22、什么是模拟 IC 设计?

23、什么是射频集成电路设计?

24、学习射频设计:选择合适的射频收发器 IC

25、连续时间 Sigma-Delta ADC:“无混叠”ADC

26、了解电压基准 IC 的噪声性能

27、数字还是模拟?I和Q的合并和分离应该怎么做?

28、良好通信链路性能的要求:IQ 调制和解调

29、如何为系统仿真建模数据转换器?

30、干货!CMOS射频集成电路设计经典讲义(Prof. Thomas Lee)

31、使用有效位数 (ENOB) 对 ADC 进行建模

32、以太网供电 (PoE) 的保护建议

33、保护高速接口的设计技巧

34、保护低速接口和电源电路设计技巧

35、使用互调多项式和有效位数对 ADC 进行建模

36、向 ADC 模型和 DAC 建模添加低通滤波器

37、揭秘芯片的内部设计原理和结构

38、Delta-Sigma ADCs中的噪声简介(一)

39、Delta-Sigma ADCs中的噪声简介(二)

40、Delta-Sigma ADCs 中的噪声简介(三)

41、了解Delta-Sigma ADCs 中的有效噪声带宽(一)

42、了解Delta-Sigma ADCs 中的有效噪声带宽(二)

43、放大器噪声对 Delta-Sigma ADCs 的影响(一)

44、放大器噪声对 Delta-Sigma ADCs 的影响(二)

45、参考电压噪声如何影响 Delta Sigma ADCs

46、如何在高分辨率Delta-Sigma ADCs电路中降低参考噪声

47、时钟信号如何影响精密ADC

48、了解电源噪声如何影响 Delta-Sigma ADCs

49、运算放大器简介和特性

50、使用 Delta-Sigma ADCs 降低电源噪声的影响

51、如何设计带有运算放大器的精密电流泵

52锁定放大器的基本原理

53了解锁定放大器的类型和相关的噪声源

54、用于降低差分 ADC 驱动器谐波失真的 PCB 布局技术

55、干货!《实用的RFIC技术》课程讲义

56、如何在您的下一个 PCB 设计中消除反射噪声

57、硅谷“八叛徒”与仙童半导体(Fairchild)的故事!   

58、帮助你了解 SerDes!                                    

往期精彩课程分享

1、免费公开课ISCAS 2015 :The Future of Radios_ Behzad Razavi

2、免费公开课:从 5 微米到 5 纳米的模拟 CMOS(Willy Sansen)

3、免费公开课:变革性射频毫米波电路(Harish Krishnaswamy)

4、免费公开课:ESSCIRC2019-讲座-Low-Power SAR ADCs

5免费公开课:ESSCIRC2019-讲座-超低功耗接收器(Ultra-Low-Power Receivers)

6、免费公开课:CICC2019-基于 ADC 的有线收发器(Yohan Frans Xilinx)

7、免费公开课:ESSCIRC 2019-有线与数据转换器应用中的抖动

8、免费公开课:ISSCC2021 -锁相环简介-Behzad Razavi

9、免费公开课:ISSCC2020-DC-DC 转换器的模拟构建块

10、免费公开课:ISSCC2020-小数N分频数字锁相环设计

11、免费公开课:ISSCC2020-无线收发器电路和架构的基础知识(从 2G 到 5G)

12、免费公开课:ISSCC2020-从原理到应用的集成变压器基础

13、免费公开课:ISSCC2021-射频和毫米波功率放大器设计的基础

14、免费公开课:ISSCC 2022-高速/高性能数据转换器系列1(Prof. Boris Murmann)

15、免费公开课:ISSCC 2022-高速/高性能数据转换器系列2(Dr. Gabriele Manganaro)

16、免费公开课:ISSCC 2022-高速/高性能数据转换器系列3(Prof. Pieter Harpe

17、免费公开课:ISSCC 2022-高速/高性能数据转换器系列4(Prof. Nan Sun)





专注于半导体人才培训,在线学习服务平台!


人才招聘服务平台


摩尔学堂 摩尔学堂专注于半导体人才培训,在线培训与学习服务平台,泛IC领域MOOC分享互动平台。 www.moorext.com
评论 (0)
  • ​2025年3月27日​,贞光科技授权代理品牌紫光同芯正式发布新一代汽车安全芯片T97-415E。作为T97-315E的迭代升级产品,该芯片以大容量存储、全球化合规认证、双SPI接口协同为核心突破,直击智能网联汽车"多场景安全并行"与"出口合规"两大行业痛点,助力车企抢占智能驾驶与全球化市场双赛道。行业趋势锚定:三大升级回应智能化浪潮1. 大容量存储:破解车联网多任务瓶颈随着​车机功能泛在化​(数字钥匙、OTA、T-BOX等安全服务集成),传统安全芯片面临存储资源挤占难题。T97-415E创新性
    贞光科技 2025-03-27 13:50 170浏览
  • 在智能语音产品的开发过程中,麦克风阵列的选型直接决定了用户体验的优劣。广州唯创电子提供的单麦克风与双麦克风解决方案,为不同场景下的语音交互需求提供了灵活选择。本文将深入解析两种方案的性能差异、适用场景及工程实现要点,为开发者提供系统化的设计决策依据。一、基础参数对比分析维度单麦克风方案双麦克风方案BOM成本¥1.2-2.5元¥4.8-6.5元信噪比(1m)58-62dB65-68dB拾音角度全向360°波束成形±30°功耗8mW@3.3V15mW@3.3V典型响应延迟120ms80ms二、技术原
    广州唯创电子 2025-03-27 09:23 182浏览
  • 在嵌入式语音系统的开发过程中,广州唯创电子推出的WT588系列语音芯片凭借其优异的音质表现和灵活的编程特性,广泛应用于智能终端、工业控制、消费电子等领域。作为该系列芯片的关键状态指示信号,BUSY引脚的设计处理直接影响着系统交互的可靠性和功能拓展性。本文将从电路原理、应用场景、设计策略三个维度,深入解析BUSY引脚的技术特性及其工程实践要点。一、BUSY引脚工作原理与信号特性1.1 电气参数电平标准:输出3.3V TTL电平(与VDD同源)驱动能力:典型值±8mA(可直接驱动LED)响应延迟:语
    广州唯创电子 2025-03-26 09:26 218浏览
  • 在当今竞争激烈的工业环境中,效率和响应速度已成为企业制胜的关键。为了满足这一需求,我们隆重推出宏集Panorama COOX,这是Panorama Suite中首款集成的制造执行系统(MES)产品。这一创新产品将Panorama平台升级为全面的工业4.0解决方案,融合了工业SCADA和MES技术的双重优势,帮助企业实现生产效率和运营能力的全面提升。深度融合SCADA与MES,开启工业新纪元宏集Panorama COOX的诞生,源于我们对创新和卓越运营的不懈追求。通过战略性收购法国知名MES领域专
    宏集科技 2025-03-27 13:22 218浏览
  • 文/陈昊编辑/cc孙聪颖‍2025 年,作为中国实施制造强国战略第一个十年计划的关键里程碑,被赋予了极为重大的意义。两会政府工作报告清晰且坚定地指出,要全力加速新质生产力的发展进程,推动传统产业全方位向高端化、智能化与绿色化转型。基于此,有代表敏锐提议,中国制造应从前沿技术的应用切入,逐步拓展至产业生态的构建,最终延伸到提升用户体验的维度,打出独树一帜、具有鲜明特色的发展牌。正是在这样至关重要的时代背景之下,于 AWE 2025(中国家电及消费电子博览会)这一备受瞩目的舞台上,高端厨房的中国方案
    华尔街科技眼 2025-03-25 16:10 90浏览
  • 汽车导航系统市场及应用环境参照调研机构GII的研究报告中的市场预测,全球汽车导航系统市场预计将于 2030年达到472亿美元的市场规模,而2024年至2030年的年复合成长率则为可观的6.7%。汽车导航系统无疑已成为智能汽车不可或缺的重要功能之一。随着人们在日常生活中对汽车导航功能的日渐依赖,一旦出现定位不准确或地图错误等问题,就可能导致车主开错路线,平白浪费更多行车时间,不仅造成行车不便,甚或可能引发交通事故的发生。有鉴于此,如果想要提供消费者完善的使用者体验,在车辆开发阶段便针对汽车导航功能
    百佳泰测试实验室 2025-03-27 14:51 221浏览
  • 六西格玛首先是作为一个量度质量水平的指标,它代表了近乎完美的质量的水平。如果你每天都吃一个苹果,有一间水果店的老板跟你说,他们所卖的苹果,质量达到六西格玛水平,换言之,他们每卖一百万个苹果,只会有3.4个是坏的。你算了一下,发现你如果要从这个店里买到一个坏苹果,需要805年。你会还会选择其他店吗?首先发明六西格玛这个词的人——比尔·史密斯(Bill Smith)他是摩托罗拉(Motorloa)的工程师,在追求这个近乎完美的质量水平的时候,发明了一套方法模型,开始时是MAIC,后来慢慢演变成DMA
    优思学院 2025-03-27 11:47 169浏览
  • 长期以来,智能家居对于大众家庭而言就像空中楼阁一般,华而不实,更有甚者,还将智能家居认定为资本家的营销游戏。商家们举着“智慧家居、智慧办公”的口号,将原本价格亲民、能用几十年的家电器具包装成为了高档商品,而消费者们最终得到的却是家居设备之间缺乏互操作性、不同品牌生态之间互不兼容的碎片化体验。这种早期的生态割裂现象致使消费者们对智能家居兴趣缺失,也造就了“智能家居无用论”的刻板印象。然而,自Matter协议发布之后,“命运的齿轮”开始转动,智能家居中的生态割裂现象与品牌生态之间的隔阂正被基于IP架
    华普微HOPERF 2025-03-27 09:46 136浏览
  • 在电子设计中,电磁兼容性(EMC)是确保设备既能抵御外部电磁干扰(EMI),又不会对自身或周围环境产生过量电磁辐射的关键。电容器、电感和磁珠作为三大核心元件,通过不同的机制协同作用,有效抑制电磁干扰。以下是其原理和应用场景的详细解析:1. 电容器:高频噪声的“吸尘器”作用原理:电容器通过“通高频、阻低频”的特性,为高频噪声提供低阻抗路径到地,形成滤波效果。例如,在电源和地之间并联电容,可吸收电源中的高频纹波和瞬态干扰。关键应用场景:电源去耦:在IC电源引脚附近放置0.1μF陶瓷电容,滤除数字电路
    时源芯微 2025-03-27 11:19 186浏览
  • 案例概况在丹麦哥本哈根,西门子工程师们成功完成了一项高安全设施的数据集成项目。他们利用宏集Cogent DataHub软件,将高安全设施内的设备和仪器与远程监控位置连接起来,让技术人员能够在不违反安全规定、不引入未经授权人员的情况下,远程操作所需设备。突破OPC 服务器的远程连接难题该项目最初看似是一个常规的 OPC 应用:目标是将高安全性设施中的冷水机(chiller)设备及其 OPC DA 服务器,与远程监控站的两套 SCADA 系统(作为 OPC DA 客户端)连接起来。然而,在实际实施过
    宏集科技 2025-03-27 13:20 121浏览
  • WT588F02B是广州唯创电子推出的一款高性能语音芯片,广泛应用于智能家电、安防设备、玩具等领域。然而,在实际开发中,用户可能会遇到烧录失败的问题,导致项目进度受阻。本文将从下载连线、文件容量、线路长度三大核心因素出发,深入分析烧录失败的原因并提供系统化的解决方案。一、检查下载器与芯片的物理连接问题表现烧录时提示"连接超时"或"设备未响应",或烧录进度条卡顿后报错。原因解析接口错位:WT588F02B采用SPI/UART双模通信,若下载器引脚定义与芯片引脚未严格对应(如TXD/RXD交叉错误)
    广州唯创电子 2025-03-26 09:05 150浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦