嵌入式C语言位操作的几种常见用法

原创 无际单片机编程 2025-03-26 07:50

关注公众号,回复“入门资料”获取单片机入门到高级开挂教程

 开发板带你入门,我们带你飞

文 | 无际(微信:2777492857)

全文约2903字,阅读大约需要 10 分钟

作为一名老单片机工程师,我承认,当年刚入行的时候,最怕的就是看那些密密麻麻的寄存器定义,以及那些让人眼花缭乱的位操作。

          

 

尤其是遇到那种“明明改了寄存器,硬件就是不听话”的情况,简直想把示波器砸了!那时心里默默吐槽:这谁设计的寄存器,就不能给个明确的开关按钮吗,非要让我扭来扭去?

          

 

其实,每个单片机工程师都经历过这段“痛苦”的旅程。在第一家公司,我特别佩服那个把NXP单片机寄存器玩得溜溜转的大佬,同时又对那些藏在代码深处的位操作充满恐惧。毕竟,一个不小心,就可能让你的程序跑飞,硬件罢工。

   

如果你也正为位操作而苦恼,那么恭喜你,找到了组织!这篇文章不会教你背诵晦涩的位操作定义,而是会用最通俗易懂的语言,带你掌握嵌入式C语言中位操作的几种常见用法。

          

 

学完之后,你不仅能轻松应对各种硬件控制任务,还能在代码优化方面更上一层楼。告别抓耳挠腮,让你也能在位操作的世界里“横着走”!

          

 

记得有一次做消费类产品,我负责一个资源非常紧张的51单片机项目,Flash和RAM都快要爆炸了。当时,我想尽各种办法优化代码,最后发现,使用位操作可以极大地压缩数据存储空间,提高程序的运行效率。

          

 

通过巧妙地运用位操作,我成功盘下了这个项目,节省了硬件成本,还赢得了老板欢心,后面我离职了几年,又以技术入股的方式把我请回去,从此踏入更大的坑,算了,血泪史,不说也罢。。。从那以后,我就也深刻体会到,掌握位操作,真的是单片机工程师的必备技能。

          

 

1. 位操作,其实没那么可怕!

1.1 位操作的基石:二进制世界

在深入位操作之前,我们需要先回到二进制的世界。

          

 

单片机本质上就是处理二进制数据的机器,一切指令、数据,最终都会转化为0和1。所以,理解二进制是掌握位操作的基础。

          

 

举个例子,我们常说的“8位单片机”,指的是它的数据总线宽度是8位,也就是一次可以处理8个二进制位的数据。比如,0xAA(十六进制)在二进制中表示为10101010。而位操作,就是对这些二进制位进行各种各样的操作。    

          

 

1.2 位与(&):提取信息的过滤器

位与操作符(&)的作用是,将两个操作数的对应位进行“与”运算。只有当两个位都为1时,结果才为1,否则为0。

uint8_t a = 0b10101010;uint8_t b = 0b00001111;uint8_t result = a & b; // result 的值为 0b00001010


位与操作最常见的应用场景是清除特定位提取特定位

          

 

清除特定位: 假设我们需要清除一个寄存器reg的第3位(从0开始计数),我们可以使用以下代码:

reg = reg & (~(1 << 3)); // 将第3位清零


这里,(1 << 3) 会生成一个掩码0b00001000,然后取反得到0b11110111。再与reg进行位与操作,就可以将第3位清零,而其他位保持不变。

          

 

提取特定位: 假设我们需要提取reg的第4位到第7位,可以使用以下代码:

uint8_t extracted = (reg >> 4) & 0x0F; // 提取第4位到第7


这里,(reg >> 4) 会将reg右移4位,使得第4位到第7位移动到最低位。然后与0x0F(0b00001111)进行位与操作,就可以提取出第4位到第7位的值。

          

 

    

1.3 位或(|):设置信息的开关

位或操作符(|)的作用是,将两个操作数的对应位进行“或”运算。只要两个位中有一个为1,结果就为1,否则为0。

uint8_t a = 0b10101010;uint8_t b = 0b00001111;uint8_t result = a | b; // result 的值为 0b10101111


位或操作最常见的应用场景是设置特定位

          

 

设置特定位: 假设我们需要设置reg的第2位为1,可以使用以下代码:

reg = reg | (1 << 2); // 将第2位设置为1


这里,(1 << 2) 会生成一个掩码0b00000100。然后与reg进行位或操作,就可以将第2位设置为1,而其他位保持不变。

          

 

1.4 位异或(^):翻转信息的魔法棒

位异或操作符(^)的作用是,将两个操作数的对应位进行“异或”运算。当两个位不同时,结果为1,相同时为0。

uint8_t a = 0b10101010;uint8_t b = 0b00001111;uint8_t result = a ^ b; // result 的值为 0b10100101

位异或操作最常见的应用场景是翻转特定位简单加密

          

 

翻转特定位: 假设我们需要翻转reg的第5位,可以使用以下代码:  

 

reg = reg ^ (1 << 5); // 翻转第5


这里,(1 << 5) 会生成一个掩码0b00100000。然后与reg进行位异或操作,就可以将第5位翻转(0变1,1变0)。

          

 

简单加密: 位异或操作可以用于简单的加密和解密。同一个数据与同一个密钥进行两次位异或操作,就可以恢复原始数据。

uint8_t data = 0x5A;uint8_t key = 0x3C;uint8_t encrypted = data ^ key; // 加密uint8_t decrypted = encrypted ^ key; // 解密,恢复为 data


          

 

1.5 位取反(~):反转世界的钥匙

位取反操作符(~)的作用是,将操作数的每一位取反。

uint8_t a = 0b10101010;uint8_t result = ~a; // result 的值为 0b01010101


位取反操作通常用于生成掩码,配合其他位操作实现更复杂的功能。比如,前面清除特定位的例子中,我们就用到了位取反。

          

 

1.6 左移(<<)和右移(>>):移形换影的魔术

          

 

    

左移操作符(<<)的作用是,将操作数的每一位向左移动指定的位数,右边补0。

          

 

右移操作符(>>)的作用是,将操作数的每一位向右移动指定的位数,左边补0(无符号数)或补符号位(有符号数)。

uint8_t a = 0b00000011;uint8_t result_left = a << 2; // result_left 的值为 0b00001100uint8_t result_right = a >> 1; // result_right 的值为 0b00000001

左移和右移操作最常见的应用场景是**乘以或除以2的幂**、**提取特定位**和**组合数据**。

          

 

乘以或除以2的幂: 左移n位相当于乘以2的n次方,右移n位相当于除以2的n次方。这比直接使用乘除法运算更快。

提取特定位: 就像前面提取reg的第4位到第7位的例子。

组合数据: 假设我们有两个8位数据,需要将它们组合成一个16位数据:

uint8_t high = 0x12;uint8_t low = 0x34;uint16_t combined = (high << 8) | low; // combined 的值为 0x1234


          

 

2. 实战演练:GPIO控制

说了这么多,我们来一个实战演练:使用位操作控制GPIO。    

          

 

假设我们需要控制一个LED的亮灭,LED连接到GPIO的第5个引脚。

#define LED_PIN (1 << 5) // 定义LED引脚对应的掩码// 点亮LEDvoid led_on() {  GPIO_PORT |= LED_PIN; // 设置GPIO引脚为高电平}// 熄灭LEDvoid led_off() {  GPIO_PORT &= ~LED_PIN; // 设置GPIO引脚为低电平}// 翻转LED状态void led_toggle() {  GPIO_PORT ^= LED_PIN; // 翻转GPIO引脚状态}

         

 

这个例子清晰地展示了位操作在控制硬件方面的简洁和高效。

          

 

3. 注意事项:别踩这些坑!

位宽问题: 确保操作的变量类型足够容纳所需的位数,避免数据溢出。

符号扩展: 在对有符号数进行右移操作时,注意符号位的扩展。

移位溢出: 移位位数不应超过变量的位宽,否则行为未定义。

优先级: 位操作符的优先级比较低,需要注意加括号,避免运算顺序错误。    

          

 

位操作是嵌入式C语言的精髓,也是单片机工程师的必备技能。掌握位操作,你就能更高效地控制硬件,更巧妙地优化代码,在单片机世界里施展你的魔法。

          

 

希望这篇文章能帮助你打开位操作的大门,让你在嵌入式开发的道路上越走越远!记住,位操作不仅是技术,更是一种思考方式,它能让你以更精巧、更高效的方式解决问题。干吧,骚年。

          

 

    

end



下面是更多无际原创个人成长经历、行业经验、技术干货

1.电子工程师是怎样的成长之路?10年5000字总结

2.如何快速看懂别人的代码和思维

3.单片机开发项目全局变量太多怎么管理?

4.C语言开发单片机为什么大多数都采用全局变量的形式

5.单片机怎么实现模块化编程?实用程度让人发指!

6.c语言回调函数的使用及实际作用详解

7.手把手教你c语言队列实现代码,通俗易懂超详细!

8.c语言指针用法详解,通俗易懂超详细!

无际单片机编程 单片机编程、全栈孵化。
评论 (0)
  •       知识产权保护对工程师的双向影响      正向的激励,保护了工程师的创新成果与权益,给企业带来了知识产权方面的收益,企业的创新和发明大都是工程师的劳动成果,他们的职务发明应当受到奖励和保护,是企业发展的重要源泉。专利同时也成了工程师职称评定的指标之一,专利体现了工程师的创新能力,在求职、竞聘技术岗位或参与重大项目时,专利证书能显著增强个人竞争力。专利将工程师的创意转化为受法律保护的“无形资产”,避免技术成果被他人抄袭或无偿使
    广州铁金刚 2025-03-25 11:48 160浏览
  • WT588F02B是广州唯创电子推出的一款高性能语音芯片,广泛应用于智能家电、安防设备、玩具等领域。然而,在实际开发中,用户可能会遇到烧录失败的问题,导致项目进度受阻。本文将从下载连线、文件容量、线路长度三大核心因素出发,深入分析烧录失败的原因并提供系统化的解决方案。一、检查下载器与芯片的物理连接问题表现烧录时提示"连接超时"或"设备未响应",或烧录进度条卡顿后报错。原因解析接口错位:WT588F02B采用SPI/UART双模通信,若下载器引脚定义与芯片引脚未严格对应(如TXD/RXD交叉错误)
    广州唯创电子 2025-03-26 09:05 110浏览
  • 在智能语音产品的开发过程中,麦克风阵列的选型直接决定了用户体验的优劣。广州唯创电子提供的单麦克风与双麦克风解决方案,为不同场景下的语音交互需求提供了灵活选择。本文将深入解析两种方案的性能差异、适用场景及工程实现要点,为开发者提供系统化的设计决策依据。一、基础参数对比分析维度单麦克风方案双麦克风方案BOM成本¥1.2-2.5元¥4.8-6.5元信噪比(1m)58-62dB65-68dB拾音角度全向360°波束成形±30°功耗8mW@3.3V15mW@3.3V典型响应延迟120ms80ms二、技术原
    广州唯创电子 2025-03-27 09:23 45浏览
  • 汽车导航系统市场及应用环境参照调研机构GII的研究报告中的市场预测,全球汽车导航系统市场预计将于 2030年达到472亿美元的市场规模,而2024年至2030年的年复合成长率则为可观的6.7%。汽车导航系统无疑已成为智能汽车不可或缺的重要功能之一。随着人们在日常生活中对汽车导航功能的日渐依赖,一旦出现定位不准确或地图错误等问题,就可能导致车主开错路线,平白浪费更多行车时间,不仅造成行车不便,甚或可能引发交通事故的发生。有鉴于此,如果想要提供消费者完善的使用者体验,在车辆开发阶段便针对汽车导航功能
    百佳泰测试实验室 2025-03-27 14:51 55浏览
  • 家电,在人们的日常生活中扮演着不可或缺的角色,也是提升人们幸福感的重要组成部分,那你了解家电的发展史吗?#70年代结婚流行“四大件”:手表、自行车、缝纫机,收音机,合成“三转一响”。#80年代随着改革开放的深化,中国经济开始飞速发展,黑白电视机、冰箱、洗衣机这“新三件”,成为了人们对生活的新诉求。#90年代彩电、冰箱、全自动洗衣机开始大量进入普通家庭,快速全面普及,90年代末,家电产品实现了从奢侈品到必需品的转变。#00年代至今00年代,随着人们追求高品质生活的愿望,常用的电视机、洗衣机等已经远
    启英AI平台 2025-03-25 14:12 53浏览
  • 六西格玛首先是作为一个量度质量水平的指标,它代表了近乎完美的质量的水平。如果你每天都吃一个苹果,有一间水果店的老板跟你说,他们所卖的苹果,质量达到六西格玛水平,换言之,他们每卖一百万个苹果,只会有3.4个是坏的。你算了一下,发现你如果要从这个店里买到一个坏苹果,需要805年。你会还会选择其他店吗?首先发明六西格玛这个词的人——比尔·史密斯(Bill Smith)他是摩托罗拉(Motorloa)的工程师,在追求这个近乎完美的质量水平的时候,发明了一套方法模型,开始时是MAIC,后来慢慢演变成DMA
    优思学院 2025-03-27 11:47 43浏览
  • 文/陈昊编辑/cc孙聪颖‍2025 年,作为中国实施制造强国战略第一个十年计划的关键里程碑,被赋予了极为重大的意义。两会政府工作报告清晰且坚定地指出,要全力加速新质生产力的发展进程,推动传统产业全方位向高端化、智能化与绿色化转型。基于此,有代表敏锐提议,中国制造应从前沿技术的应用切入,逐步拓展至产业生态的构建,最终延伸到提升用户体验的维度,打出独树一帜、具有鲜明特色的发展牌。正是在这样至关重要的时代背景之下,于 AWE 2025(中国家电及消费电子博览会)这一备受瞩目的舞台上,高端厨房的中国方案
    华尔街科技眼 2025-03-25 16:10 59浏览
  • 在电子设计中,电磁兼容性(EMC)是确保设备既能抵御外部电磁干扰(EMI),又不会对自身或周围环境产生过量电磁辐射的关键。电容器、电感和磁珠作为三大核心元件,通过不同的机制协同作用,有效抑制电磁干扰。以下是其原理和应用场景的详细解析:1. 电容器:高频噪声的“吸尘器”作用原理:电容器通过“通高频、阻低频”的特性,为高频噪声提供低阻抗路径到地,形成滤波效果。例如,在电源和地之间并联电容,可吸收电源中的高频纹波和瞬态干扰。关键应用场景:电源去耦:在IC电源引脚附近放置0.1μF陶瓷电容,滤除数字电路
    时源芯微 2025-03-27 11:19 43浏览
  • ​2025年3月27日​,贞光科技授权代理品牌紫光同芯正式发布新一代汽车安全芯片T97-415E。作为T97-315E的迭代升级产品,该芯片以大容量存储、全球化合规认证、双SPI接口协同为核心突破,直击智能网联汽车"多场景安全并行"与"出口合规"两大行业痛点,助力车企抢占智能驾驶与全球化市场双赛道。行业趋势锚定:三大升级回应智能化浪潮1. 大容量存储:破解车联网多任务瓶颈随着​车机功能泛在化​(数字钥匙、OTA、T-BOX等安全服务集成),传统安全芯片面临存储资源挤占难题。T97-415E创新性
    贞光科技 2025-03-27 13:50 46浏览
  • 案例概况在丹麦哥本哈根,西门子工程师们成功完成了一项高安全设施的数据集成项目。他们利用宏集Cogent DataHub软件,将高安全设施内的设备和仪器与远程监控位置连接起来,让技术人员能够在不违反安全规定、不引入未经授权人员的情况下,远程操作所需设备。突破OPC 服务器的远程连接难题该项目最初看似是一个常规的 OPC 应用:目标是将高安全性设施中的冷水机(chiller)设备及其 OPC DA 服务器,与远程监控站的两套 SCADA 系统(作为 OPC DA 客户端)连接起来。然而,在实际实施过
    宏集科技 2025-03-27 13:20 42浏览
  • 长期以来,智能家居对于大众家庭而言就像空中楼阁一般,华而不实,更有甚者,还将智能家居认定为资本家的营销游戏。商家们举着“智慧家居、智慧办公”的口号,将原本价格亲民、能用几十年的家电器具包装成为了高档商品,而消费者们最终得到的却是家居设备之间缺乏互操作性、不同品牌生态之间互不兼容的碎片化体验。这种早期的生态割裂现象致使消费者们对智能家居兴趣缺失,也造就了“智能家居无用论”的刻板印象。然而,自Matter协议发布之后,“命运的齿轮”开始转动,智能家居中的生态割裂现象与品牌生态之间的隔阂正被基于IP架
    华普微HOPERF 2025-03-27 09:46 38浏览
  • 在智能终端设备开发中,语音芯片与功放电路的配合直接影响音质表现。广州唯创电子的WTN6、WT588F等系列芯片虽功能强大,但若硬件设计不当,可能导致输出声音模糊、杂音明显。本文将以WTN6与WT588F系列为例,解析音质劣化的常见原因及解决方法,帮助开发者实现清晰纯净的语音输出。一、声音不清晰的典型表现与核心原因当语音芯片输出的音频信号存在以下问题时,需针对性排查:背景杂音:持续的“沙沙”声或高频啸叫,通常由信号干扰或滤波不足导致。语音失真:声音断断续续或含混不清,可能与信号幅度不匹配或功放参数
    广州唯创电子 2025-03-25 09:32 86浏览
  • 在当今竞争激烈的工业环境中,效率和响应速度已成为企业制胜的关键。为了满足这一需求,我们隆重推出宏集Panorama COOX,这是Panorama Suite中首款集成的制造执行系统(MES)产品。这一创新产品将Panorama平台升级为全面的工业4.0解决方案,融合了工业SCADA和MES技术的双重优势,帮助企业实现生产效率和运营能力的全面提升。深度融合SCADA与MES,开启工业新纪元宏集Panorama COOX的诞生,源于我们对创新和卓越运营的不懈追求。通过战略性收购法国知名MES领域专
    宏集科技 2025-03-27 13:22 43浏览
  • 在嵌入式语音系统的开发过程中,广州唯创电子推出的WT588系列语音芯片凭借其优异的音质表现和灵活的编程特性,广泛应用于智能终端、工业控制、消费电子等领域。作为该系列芯片的关键状态指示信号,BUSY引脚的设计处理直接影响着系统交互的可靠性和功能拓展性。本文将从电路原理、应用场景、设计策略三个维度,深入解析BUSY引脚的技术特性及其工程实践要点。一、BUSY引脚工作原理与信号特性1.1 电气参数电平标准:输出3.3V TTL电平(与VDD同源)驱动能力:典型值±8mA(可直接驱动LED)响应延迟:语
    广州唯创电子 2025-03-26 09:26 132浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦