如何在实际应用中利用热阻参数计算芯片结温

电子芯期天 2025-03-25 07:30

不知道各位电源行业的工程师们,平时工作中是否遇到了下列问题:

1. 芯片规格书上面提供的热阻参数,能直接用到我的电路板上吗?

2. 我用芯片规格书上面标的热阻参数计算芯片内部结温,怎么感觉算出来的和实际对不上?

3. 我测量芯片的OTP温度,是从芯片外部加热,我怎么保证芯片内的的温度和外部温度差异很小?

要回答这几个问题,其实并不容易,需要对芯片的热阻、热特性等的测量原理、测量标准、影响因素彻底、深入的了解。本文揭秘这其中的秘密。

1. 实际的热阻数据示例

通常在IC的技术规格书中都会提供IC热阻相关的信息。但是,所提供的热阻类型和设置可能会因IC的种类不同而略有不同。下面是500mA输出LDO线性稳压器的技术规格书中提供的热阻信息示例。    

这款IC有两种封装,因此提供了每种封装(TO263-5、TO252-J5)的热阻。这两种封装都是带散热片的5引脚表贴型封装。下面来看一下具体内容。如Note 1所示,该热阻数据符合JESD51-2A(Still-Air)标准。提供的热阻为以下两种:

Junction to Ambient:θJA(℃/W)

Junction to Top Characterization Parameter:ΨJT(℃/W)

此外,还给出了每种热阻在两种电路板条件下的值,一种是安装于1层电路板上,另一种是安装于4层电路板上。1层电路板如Note 3所示是符合JESD51-3的电路板,4层电路板是符合JESD51-5和7的电路板(Note 4)。表中列出了每种电路板的条件。

2. 热阻与实装电路板之间的关系

在上例中,作为热阻条件,明确列出了JESD51中规定的实装电路板的条件。这意味着热阻不仅仅由IC封装决定,很大程度上还受到其实装电路板条件的影响。近年来,表贴型封装的应用非常广泛,在考虑IC的热阻时,必须要考虑到实装电路板的散热(降低热阻)情况。仅根据封装的热阻进行热计算是不现实的。    

该图显示了每种热阻(θJA、ΨJT)与散热用的铜箔面积之间的关系。这是用于测试的封装为背面带散热片的8引脚SOP型封装、铜箔面积为15.7mm2到1200mm2条件下的数据。其他因素还包括电路板层数、材料和铜箔厚度等,不过在这个关系示意图中,请将这些因素视为条件相同,在此前提下来看铜箔面积与热阻之间的关系。

在本例中,从IC的结点(芯片)经由实装电路板到环境(大气)的热阻θJA和铜箔面积的关系非常显著。实际上,需要确保散热所需(即适当的θJA)的铜箔面积,以免在使用条件下超过Tjmax。反之,如果未明确说明所提供的热阻的条件,则必须要确认其条件。上例中的数值表明,热阻会因条件不同而有很大不同。

3. 热阻数据:热阻和热特性参数的定义

θJA和ΨJT的定义:

θJA(℃/W):结点-周围环境间的热阻

ΨJT(℃/W):结点-封装上表面中心间的热特性参数

为了便于具体理解这两个概念,下面给出了表示θJA和ΨJT的示意图。    

θJA是从结点到周围环境之间的热阻,存在多条散热路径。ΨJT是从结点到封装上表面中心的热特性参数

此外,还定义了结点与封装上表面之间的热阻θJC-TOP和结点与封装下表面之间的热阻θJC-BOT,如下图所示。请注意,θJC-TOP和ΨJT之间存在细微差别,即“封装上表面”和“封装上表面中心”的差异。

这些均在JEDEC标准的JESD51中进行了定义。下表中汇总了每种概念的定义、用途及计算公式。

※1:环境温度(TA)是指不受测试对象器件影响的位置的周围环境温度。在发热源的边界层的外侧。

※2:θJA和ΨJT是实际安装在JEDEC电路板上时的数据。

※3:θJC-TOP和θJC-BOT根据JESD51-14(TDI法)标准测试。

从上述可以发现,热阻和热特性参数在JEDEC标准的JESD51中进行了定义。每种热阻和热特性参数均有对应的基本用途,计算时使用相应的热阻和热特性参数进行计算

4. 热阻数据:估算TJ时涉及到的θJA和ΨJT

鉴于近年来电子设备中半导体元器件的实际安装条件,一般认为通过θJA进行热设计是比较难的。近年来难以统一TA的定义,实际往往需要单独定义。通常,在半导体器件安装密度很高的设备中很难实测TA近年来,根据比较容易实测的TT和ΨJT来估算TJ已成为主流方法。接下来将分两次来探讨在进行TJ估算时如何使用θJA和ΨJT。另外,还将单独介绍使用了热阻数据的TJ估算示例。    

4.1 θJA和ΨJT

下表是上文中提到的θJA和ΨJT相关的重点内容。θJA是从结点到周围环境之间的热阻,存在多条散热路径。ΨJT是从结点到封装上表面中心的热特性参数。ΨJT的计算公式中包含的TT是封装顶面中心的温度。

表格中建议的用途是θJA:“形状不同的封装之间的散热性能比较”,ΨJT:“估算在实际应用产品中的结温”,下面来思考一下这样建议的原因。

4.2 关于θJA

在热设计中,有一个讨论:“θJA可以应用于热设计吗?”从结论来看,可以认为使用θJA来进行热设计是存在困难的。其主要原因如下:

●TA的温度是哪里的温度?

最终还是需要通过估算TJ的温度来进行判断。使用θJA计算TJ时,需要环境温度TA

TA的温度是由JEDEC Standard定义的。以下是用来参考的JEDEC Standard:

JESD51-2A Integrated Circuits Thermal Test Method Environmental Conditions – Natural Convection (Still Air)

TA基本上是在JEDEC指定的位置测量的,但有些制造商可能会单独提出TA测量条件。

另外,JEDEC Standard是在不受发热影响的空间前提下来定义TA的,但近年来设备的安装情况越来越复杂,出现了是否真的存在不受发热影响的空间的讨论。    

●高密度安装趋势

如上一项所提到的,由于安装密度越来越高,IC和其他发热器件拥挤在电路板上。很容易想象,现实中由于与目标相邻的IC等器件的热干扰导致温度升高,因此很难判断认为是TA的位置的温度是否真的是TA的温度。

●θJA随有效散热范围的变化而变化

表面贴装型封装的IC,其技术规格书中的θJA会提供散热用的铜箔面积、电路板的材质和厚度等条件。因此反过来也可以说“θJA根据实装条件而变化”。右图是表示θJA和IC贴装部的表面铜箔面积之间的关系的数据示例。从图中可以明显看出,随着铜箔面积的增加,θJA变小了,但是θJA的变化并不是线性的,而且如果没有提供这样的图,根据实际电路板的相应面积估算θJA是相当困难的。很遗憾的是,并不是每个制造商都会提供这样的图表。

基于这些情况,尤其是在近年来的实际情况下,通常认为使用θJA进行热设计是很难的。近年来,逐渐成为主流的TJ估算方法是实际测量目标产品封装顶面中心的温度TT,并根据ΨJT计算TJ    

4.3 关于ΨJT

ΨJT表示相对于器件整体的功耗P的、结点与封装顶面中心之间的温度差的热特性参数。下图是表示TJ和TT的示意图。由于TT是封装顶面中心处的温度,即芯片顶部表面温度,通常可以在实装设备的实际工作状态下使用热电偶或热成像仪等设备进行测量。

只要能够获得TT的数据,就可以通过变换前面给出的ΨJT的公式来求得TJ

ΨJT=(TJーTT) / P    TJ=TT+ΨJT×P

“ΨJT×P”是TJ和TT之间的温差,因此将其与TT相加得到TJ

4.4 不同条件下θJA和ΨJT的特性及有效性

由于ΨJT是一个表示相对于器件整体的功耗、结点与封装顶面中心之间的温度差的热特性参数,因此可以用来推算实际工作状态下的TJ。然而,有一些实际工作条件会影响θJA和ΨJT,并会影响它们在TJ估算过程中的有效性。下面举几个例子来探讨它们各自的特性和有效性。

●电路板散热性能的变化

右图表示电路板表层铜箔面积与θJA和ΨJT之间的关系。θJA受铜箔面积(即流入PCB的热量)的影响很大,而ΨJT由于器件的大部分热量都会流入PCB,因此TJ-TT间的温差非常小,故ΨJT的值和变化也都很小。由于θJA会因实装电路板的条件不同而有很大变化,因此很难直接用于估算TJ,但ΨJT不会因PCB的差异而有较大变化,所以是可以使用的。    

●被屏蔽罩等覆盖的状态

出于EMC对策等原因,目标器件可能会有使用屏蔽罩覆盖的情况。下面是使用和不使用屏蔽罩时实测的θJA和ΨJT结果比较。

有屏蔽罩时,θJA和ΨJT均会上升,但θJA的波动较大,无法用于估算TJ。而ΨJT的上升量很小,原来的值也很小,波动也很小,即使直接用于TJ计算也不会造成太大的误差。例如,使用无屏蔽罩的ΨJT=9.4℃/W,来计算有屏蔽罩的TJ结果如下,与实际温度106.7℃相比,误差在1%以内。

●被树脂密封并被屏蔽罩等覆盖的状态

为了起到保护作用,有时会将电路板上的实装元器件进行树脂密封。在这里,假设是不仅被树脂密封还被屏蔽罩等覆盖的情况。    

θJA受密封树脂影响,热阻显著降低,在这种条件下,θJA不能用于TJ计算。ΨJT呈上升趋势,波动较大。使用没有树脂密封和屏蔽罩时的ΨJT=9.4℃/W,计算有树脂密封和屏蔽罩时的TJ,结果如下。

与实际温度53.3℃相比,误差约为8%。这就需要探讨是否允许这个程度的误差,或者纠正误差后用于TJ的计算。

●成为热源的元器件彼此相邻的状态

虽然应该避免这种情况,但在元器件实际安装过程中产生热量的元器件还是可能会彼此相邻。下面是两者具有适当的距离(中间图)时和它们彼此相邻(右图)时的θJA和ΨJT结果比较。

从数据可以看出,当元器件距离很近时,θJA和ΨJT均上升,但θJA的波动较大,不能用于TJ的估算。当然,ΨJT也有波动,但由于其值原本就小,波动也很小,因此即使用于TJ的估算也不会造成太大的误差。例如,使用一个元器件时的ΨJT=9.4℃/W,计算两个相邻状态下的TJ时,结果如下,与实际温度101.5℃相比,误差在1%以内。    

●电路板层数变化时

下图显示了当电路板的层数发生变化时,θJA和ΨJT的变化情况。

随着电路板层数的增加,θJA下降显著,但即使在这种情况下,θJA也不能用于TJ的计算。ΨJT的波动也很大,作为示例,使用1s(1层电路板)时的ΨJT=9.4℃/W,计算2s2p(4层电路板)时的TJ,结果如下。

与实际温度36.3℃相比,误差约为6%,这就需要探讨是否允许这个程度的误差,或者是否需要纠正误差。

5. 总结

上文在实际应用产品中安装时可能会有的4种条件下,比较了θJA和ΨJT。结论是受铜箔和电路板等散热条件的影响,以及相邻元器件的热干扰影响,在应用产品中很难将θJA用于TJ的估算。而ΨJT虽然会因安装条件而变化,但由于其值原本就很小,而且在某些条件下的波动也很小,因此通过掌握所使用的电路板和应用产品的状态,并高精度地测量TT,可以将提供的ΨJT值用于实际使用时的TJ估算。    

三者的适用环境

当知道参考(即环境,箱子或板)温度,功耗以及相关的θ值时,可以计算结温。Theta-JA通常用于安装在环氧基PCB上的部件的自然和强制对流空气冷却系统。当封装具有直接安装到PCB或散热器的高导热封装时,Theta-JC非常有用。而Theta-JB则适用于与封装相邻的板的温度已知时的应用场景。

除了这些Theta热阻之外,Ψ-JB(结到板)和Ψ-JT(结到顶部)热特性参数有时也是比较有用的。对于在板上通电的器件,这些Ψ信息显示图结温和电路板温度或“封装顶部”温度之间的相关性。术语“Ψ”用于将它们与“θ”热阻区分开,因为θ不是所有的热实际上在温度测量点与Ψ之间流动。由于这个原因,所以它们不是真正的热阻,而是热特性参数。

ΨJB对θJB区别:

希腊字母“Ψ”用于区分ΨJB和θJB,因为并不是所有的热量实际上在温度测量点(即结点和板)之间流动,类似于θJB。这是因为ΨJB测试的设置不会像θJB那样强制所有热流从板子流过。因此,ΨJB不是“真正的”热阻。使用ΨJB测试,器件热量可以从封装顶部和底面同时散出;因此Ψjb将总是具有比θJB小的值。然而,事实证明,对于大多数常见的中小型包装,这两个值将是相似的 - 通常在15%内。因此,有时报告ΨJB代替θJB。

ΨJT和θJC区别:

值得注意的是,ΨJT与θJC不同,只有当封装表面安装到散热器上时才适用。测试方法和结果值是非常不同的。事实上,如果在同一封装上测量ΨJT和θJC(在顶表面处),则ΨJT通常将远小于θJC。希腊字母“Ψ”用于帮助清楚地区分ΨJT和θJC热电阻。在自然对流下,塑料封装的ΨJT通常是相对较低的值。这意味着TJ通常只比包装顶部TT稍热。管芯仅通过塑料封装的薄区域与顶表面物理分离。因此,除非顶部被气流强行冷却,否则它们之间将有非常小的温差。较薄型的封装的自然对流ΨJT值通常小于1℃ / W。并且ΨJT值还会因周围风流速度的变化而发生变化。    

声明:

本文转载自开关电源应用与研究公众号,及作品内容、版权和其它问题,请联系工作人员微(13237418207),我们将在第一时间和您对接删除处理!
投稿/招聘/广告/课程合作/资源置换 请加微信:13237418207

电源入口加磁珠,出事了


如何测量运算放大器的输入电容以尽可能降低噪声

 

图片

亿~

  ❤️ 

电子芯期天 致力于分享各种电子电路开发设计资料及经验.
评论 (0)
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 343浏览
  • 温度传感器的工作原理依据其类型可分为以下几种主要形式:一、热电阻温度传感器利用金属或半导体材料的电阻值随温度变化的特性实现测温:l ‌金属热电阻‌(如铂电阻 Pt100、Pt1000):高温下电阻值呈线性增长,稳定性高,适用于工业精密测温。l ‌热敏电阻‌(NTC/PTC):NTC 热敏电阻阻值随温度升高而下降,PTC 则相反;灵敏度高但线性范围较窄,常用于电子设备温控。二、热电偶传感器基于‌塞贝克效应‌(Seebeck effect):两种不同
    锦正茂科技 2025-05-09 13:31 96浏览
  • 在过去的很长一段时间里,外卖市场呈现出美团和饿了么双寡头垄断的局面。美团凭借先发优势、强大的地推团队以及精细化的运营策略,在市场份额上长期占据领先地位。数据显示,截至2024年上半年,美团外卖以68.2%的市场份额领跑外卖行业,成为当之无愧的行业老大。其业务广泛覆盖,从一线城市的繁华商圈到二三线城市的大街小巷,几乎无处不在,为无数消费者提供便捷的外卖服务。饿了么作为阿里本地生活服务的重要一环,依托阿里强大的资金和技术支持,也在市场中站稳脚跟,以25.4%的份额位居第二。尽管市场份额上与美团有一定
    用户1742991715177 2025-05-06 19:43 63浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 279浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 184浏览
  • 文/Leon编辑/cc孙聪颖‍《中国家族企业传承研究报告》显示,超四成“企二代” 明确表达接班意愿,展现出对家族企业延续发展的主动担当。中国研究数据服务平台(CNRDS)提供的精准数据进一步佐证:截至 2022 年,已有至少 280 家上市家族企业完成权杖交接,其中八成新任掌门人为创始人之子,凸显家族企业代际传承中 “子承父业” 的主流模式。然而,对于“企二代” 而言,接棒掌舵绝非易事。在瞬息万变的商业环境中,他们既要在白热化的市场竞争中开拓创新、引领企业突破发展瓶颈,又需应对来自父辈管理层的经
    华尔街科技眼 2025-05-06 18:17 27浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 408浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 433浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 270浏览
  • 硅二极管温度传感器是一种基于硅半导体材料特性的测温装置,其核心原理是利用硅二极管的电学参数(如正向压降或电阻)随温度变化的特性实现温度检测。以下是其工作原理、技术特点及典型应用:一、工作原理1、‌PN结温度特性‌硅二极管由PN结构成,当温度变化时,其正向电压 VF与温度呈线性负相关关系。例如,温度每升高1℃,VF约下降2 mV。2、‌电压—温度关系‌通过jing确测量正向电压的微小变化,可推算出环境温度值。部分型号(如SI410)在宽温域内(如1.4 K至475 K)仍能保持高线性度。
    锦正茂科技 2025-05-09 13:52 103浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 515浏览
  • 飞凌嵌入式作为龙芯合作伙伴,隆重推出FET-2K0300i-S全国产自主可控工业级核心板!FET-2K0300i-S核心板基于龙芯2K0300i工业级处理器开发设计,集成1个64位LA264处理器,主频1GHz,提供高效的计算能力;支持硬件ECC;2K0300i还具备丰富的连接接口USB、SDIO、UART、SPI、CAN-FD、Ethernet、ADC等一应俱全,龙芯2K0300i支持四路CAN-FD接口,具备良好的可靠性、实时性和灵活性,可满足用户多路CAN需求。除性价比超高的国产处理器外,
    飞凌嵌入式 2025-05-07 11:54 63浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 266浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦