为什么需要时间同步,时间同步解决什么问题

谈思实验室 2025-03-23 18:00

点击上方蓝字谈思实验室

获取更多汽车网络安全资讯

1.为什么需要时间同步,时间同步解决什么问题

  • 时间同步技术就是为了解决精确获取传感器采样时间的,在以太网、CAN、Flexray总线上都有相应的实现。

  • 时间同步信息以广播的形式从Master(TM)节点发送至各Slave节点(TS),或者通过时间网关将时间同步信息同步至其他子网络,用于解决各ECU因硬件时钟信号偏差、总线仲裁、总线传输、软件处理等原因带来的时间延迟。

  • 对于自动驾驶而言,通常需要摄像头、毫米波雷达、超声波雷达、激光雷达等传感器,而这些传感器的精确的数据采集时间是及其重要的,因为这些数据是感知和决策规划的输入。如果输入数据的时间不同步,可能会引起决策规划出错误的动作,导致车辆做出危险的动作。

  • 汽车上的各个ECU基本都是实时性非常强的控制器,在关联ECU之间或ECU内部各个软件模块之间通常需要在大致同步的时间节拍上运行,特别是在某些高速场景,些微时间的偏差可能引发的后果是灾难性的。

  • 以ADAS系统为例,感知模块检测到一个障碍物,控制决策模块需要知道这个障碍物是在什么时间检测到的,以此作出响应。如果感知模块和控制模块都在一个控制器内还好,延时不会很大,若是分布在不同的控制器中,感知模块发送的障碍物信息携带的时间戳与实际检测到的时间偏差太大,那么等控制模块作出响应时,可能汽车已经撞到障碍物上了。所以,时间同步显得尤为重要,各个ECU之间要有一个一致的时钟Global Time (GT)来提供相对准确、精度足够的绝对时间值,并且将此时间同步到各个ECU。

2、IEEE1588 时间同步协议的理解

2.1 请求应答机制同步原理

主要过程分为四步:

(1)Sync,主时钟发出 sync 报文,并记录下 sync 报文离开主时钟的精确发送时间 T1;

(2)Follow_up,主时钟将精确发送时间 T1 封装到 Follow_up 报文中,发送给从时钟;

(3)Delay_Req,从时钟向主时钟,发送Delay_Req报文,用于方向传输延时计算,并记录发送时刻T3,主时钟收到该报文后,记录接收时刻T4;

(4)Delay_Resp,主时钟收到Delay_Req后,回复一个Delay_Resp的报文,将T4告诉从时钟。

以上的计算是基于主时钟和从时钟同步的场景,真实情况是主时钟和从时钟存在偏差,我们假设这个偏差为offset,即 T主-T从 = offset

在网络中,一般主-->从,从-->主 网络延时是一样;

T4 - T3 = delay - offset;

T2 - T 1 = delay+ offset;

因此传递的延时 :

delay = [(T2-T1) + (T4-T3)] / 2

由于offset存在,映射到从时钟 时间轴上计算offset:

offset = [(T2-T1) - (T4-T3)] / 2

2.2. 端延时机制同步原理

所谓的端延时机制,是在请求响应延时的基础上,增加pdelay_resp和Pdelay_resp_follow_up的计算,主要是为了进一步考虑上游链路的延时;

进而得到delay:

delay = [(T4-T3) + (T6-T5)] / 2

进而得到offset:

offset = (T2-T1) - {[(T4-T3) + (T6-T5)] / 2}

3.全局时间软件模块(StbM,Synchronized Time-base Manager)

功能只有两个:

同步各个软件模块实体

提供绝对时间值

4.全局时间如何通过 CAN, FlexRay, ETH 来传播

从右下角就是硬件时钟,也是整个同步系统的基石。但是因为隔一段时间超过最大值后就会溢出,所以需要一个Software Counter来记录这种溢出,然后一起产生了一个虚拟本地时间 (Virtual Local Time). 这个时间就没有溢出和跳跃了,也就是说很平稳的表达时间的流逝。

接下来是进行时间的矫正。接下来就可以产生一个同步的本地时间信号,之后就可以传递给其他的软件模块了。

5.StbM的Master 与 Slave 之间如何做时间同步

  • 时间主站通过时间同步消息将Global Time Bases分发到每个时域的连接时从站。

  • Master 先基于本地时钟生成一个Global Time Base,根据这个Global Time Base会更新Master 的所有时间控制单元,之后打出时间戳,通过Message发出去

  • Slave 端接收到 Message后,解析出时间戳,放到 Local Time Base 里,之后 Slave 的 Local Time Base模块会基于Slave的时钟跟新一个新的时间到 Local Time Base 里,最后更新 Slave 的所有时间控制单元。

  • Slave 更新Local Time Base后传给SWC应用进行处理

6.基于AUTOSAR的CAN的时间同步机制(CANTSyn)

  • 第一步是TM发送SYNC信息,第二步是发送FUP(Timeadjustment message (Follow-Up),时间调整信息),第三步. 最后在Slave方,我们就可以计算出本地当下的同步时间值=(t3r-t2r)+t1r

  • TM节点在t0r时刻调用接口发送SYNC信号,SYNC信号中包含的时间信息为t0r,在t1r时刻SYNC信号发送完成,此时的时间为t1r。TS节点在t2r时刻接收到了SYNC信号。

  • TM节点再次发送FUP信号,信号中包含的时间信息为t4r=t1r-(st0r),其中st0r=t1r-t0r,TS节点在t3r时刻接收到了FUP信号。

  • 同步时间Time其实是时基【Time Base,秒s时间】和一个实时运行的32bit的定时器counter(TC)之和(会转换为纳秒ns时间);Time Master将Time Base传输至Time Slaves。

  • 在SYNC消息传输完成时,TM和TS同时捕捉存储各自的定时器counter计数值,分别记为Tx_Stamp和Rx_Stamp;

  • TM计算传输时间M_TX = ns(T0r)+ ns(Tx_Stamp-T0rCounter),将counter转换为ns时间,然后开始传输FUP同步消息-包含ns时间TX;

  • TS接收到FUP消息时计算此时的实际同步时间 S_real = s(T0r) + M_TX + ns(TCs – Rx_Stamp),TCs为接收到FUP消息时刻的定时器counter值。

7.CAN的同步消息结构

SYNC 和 FUP 用一个 CAN-ID。


8.基于CAN的实际用法

  • 第一步,在SYNC报文中,塞入基于秒的时间,即所谓的t0r;

  • 第二步,在FUP报文中,塞入基于纳秒的时间,即所谓的t4r = t1r - t0r,此时从节点知道,发送方真实的发送时刻为 t1r ,即t0r秒t4r纳秒,这样 从节点就可以得到当前真实的时间,current_time = t0r + t4r + t3r-t2r【这里t3r,表示计算时刻,从节点本地的时间】

  • 在Slave收到SYNC的消息后,从 StbM_GetCurrentVirtualLocalTime 获取T2vlt时间,在收到FUP的消息后,从 StbM_GetCurrentVirtualLocalTime 获取T5vlt时间。

9.如何获取当前时间:时间矫正算法

  • 获取当前时间:


  • 时间的矫正过程,并不改变各个在本地的运行时钟,而是动态改变本地时钟的实体变量。

  • 时间纠正机制:Tv-Tvsync 保存从上次接收到的 Global Time 所经过的时间量。但它会受到本地硬件时钟漂移的影响。当从总线接收到新的 Global Time 时,Global Time 的 local instance 和接收到的 Global Time之间可能存在偏移。

  • Rate Devision:指时间在本地时基和全局时基实例中以不同的速率前进。例如,如果本地硬件参考时钟由由于制造公差和/或热效应而导致频率关闭的晶体驱动,则可能会发生这种偏差。

  • Time Offset:指时基的本地实例和全局时基没有精确同步。当本地硬件参考时钟的速率不准确并且与全局时基的同步受到抖动效应、软件延迟和计数器粒度的影响时,就会出现这种偏差。 

  • 因此,需要执行一种时间校正,如下图所示:

  • offset Correction :偏移校正校正绝对时间偏差(偏移)。根据偏移量的大小和 StbM 的配置,该校正可以通过跳跃校正或速率自适应来执行。偏移校正独立于速率校正。每次将时基的本地实例同步到其全球时基时都会执行此操作。

  • Rate Correction:Rate Correction 的工作原理不是为了让它以正确的速率前进而调整本地硬件参考时钟。相反,速率校正仅在读取时实时校正时基的本地实例的值。

  • rate Adaption :速率校正校正本地硬件参考时钟的速率偏差。这种校正是通过一个乘法校正因子来完成的,该因子在时钟的预配置速率之外使用。速率校正确定测量范围内的校正因子。然而,该校正因子不是固定的,而是在每次成功测量后更新。

  • Jump Correction 通过将偏移量添加到 Time Base 的本地实例(相当于接管 Global Time Base 的值),一步校正绝对时间偏移量。

原文链接:

https://blog.csdn.net/xiandang8023/article/details/127719288

 end 

图片

 精品活动推荐 

图片
图片
图片
图片
图片
图片


图片

 AutoSec中国行系列沙龙 

图片

图片

 专业社群 

图片

部分入群专家来自:

新势力车企:

特斯拉、合众新能源-哪吒、理想、极氪、小米、宾理汽车、极越、零跑汽车、阿维塔汽车、智己汽车、小鹏、岚图汽车、蔚来汽车、吉祥汽车、赛力斯......

外资传统主流车企代表:

大众中国、大众酷翼、奥迪汽车、宝马、福特、戴姆勒-奔驰、通用、保时捷、沃尔沃、现代汽车、日产汽车、捷豹路虎、斯堪尼亚......

内资传统主流车企:

吉利汽车、上汽乘用车、长城汽车、上汽大众、长安汽车、北京汽车、东风汽车、广汽、比亚迪、一汽集团、一汽解放、东风商用、上汽商用......

全球领先一级供应商:

博世、大陆集团、联合汽车电子、安波福、采埃孚、科世达、舍弗勒、霍尼韦尔、大疆、日立、哈曼、华为、百度、联想、联发科、普瑞均胜、德赛西威、蜂巢转向、均联智行、武汉光庭、星纪魅族、中车集团、赢彻科技、潍柴集团、地平线、紫光同芯、字节跳动、......

二级供应商(500+以上):

Upstream、ETAS、Synopsys、NXP、TUV、上海软件中心、Deloitte、中科数测固源科技、奇安信、为辰信安、云驰未来、信大捷安、信长城、泽鹿安全、纽创信安、复旦微电子、天融信、奇虎360、中汽中心、中国汽研、上海汽检、软安科技、浙江大学......

人员占比

图片


公司类型占比


图片

更多文章

不要错过哦,这可能是汽车网络安全产业最大的专属社区!

关于涉嫌仿冒AutoSec会议品牌的律师声明

一文带你了解智能汽车车载网络通信安全架构

网络安全:TARA方法、工具与案例

汽车数据安全合规重点分析

浅析汽车芯片信息安全之安全启动

域集中式架构的汽车车载通信安全方案探究

系统安全架构之车辆网络安全架构

车联网中的隐私保护问题

智能网联汽车网络安全技术研究

AUTOSAR 信息安全框架和关键技术分析

AUTOSAR 信息安全机制有哪些?

信息安全的底层机制

汽车网络安全

Autosar硬件安全模块HSM的使用

首发!小米雷军两会上就汽车数据安全问题建言:关于构建完善汽车数据安全管理体系的建议

谈思实验室 深入专注智能汽车网络安全与数据安全技术,专属汽车网络安全圈的头部学习交流平台和社区。平台定期会通过线上线下等形式进行一手干货内容输出,并依托丰富产业及专家资源,深化上下游供需对接,逐步壮大我国汽车安全文化及产业生态圈。
评论 (0)
  •   有效数据智能分拣系统详解   北京华盛恒辉有效数据智能分拣系统融合人工智能、大数据分析与机器学习等前沿技术,实现海量数据自动化分类、筛选、整理及分配。凭借强大的数据处理效能,助力企业精准提取关键信息,优化决策流程,提升运营效率。以下从系统架构、核心功能、技术特性、应用场景及发展趋势展开解读。   应用案例   目前,已有多个有效数据智能分拣系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润有效数据智能分拣系统。这些成功案例为有效数据智能分拣系统的推广和应用提供了有力支持。
    华盛恒辉l58ll334744 2025-04-21 16:46 112浏览
  • 引言:工业安全与智能化需求的双重驱动在工业安全、环境保护及家庭安防领域,气体泄漏引发的安全事故始终是重大隐患。随着传感器技术、物联网及语音交互的快速发展,气体检测报警器正朝着智能化、低成本、高可靠的方向演进。WT588F02B-8S语音芯片,以“离在线语音更换+多协议通信”为核心优势,为气体检测报警器提供了一套高效、灵活的低成本语音解决方案,助力开发者快速响应市场需求。产品功能与市场需求1. 核心功能:从监测到预警的全流程覆盖实时气体监测:支持一氧化碳、臭氧、硫化氢等多种气体浓度检测,精度可达p
    广州唯创电子 2025-04-22 09:14 35浏览
  • 职场烂摊子,每个人都难免遇上如果你在职场待久了,总会碰到一些让人无奈的情况:比如刚接手的项目混乱不堪、前任同事留下的任务一团乱麻,甚至有时因为自己的疏忽造成麻烦。面对这种烂摊子,烦躁、焦虑、甚至怀疑人生的情绪都会扑面而来。但如果你冷静想想,会发现真正消耗你的,往往不是工作本身,而是持续不断的心理内耗。那么问题来了,如何摆脱内耗,快速有效地“自救”?摆脱内耗,从情绪中抽离我曾经历过一个典型的职场烂摊子:前任项目负责人突然辞职,项目资料缺失严重,进度远远落后,客户抱怨不断。当时接手后的第一反应就是慌
    优思学院 2025-04-21 18:21 39浏览
  • 在汽车行业的变革浪潮中,智界汽车的诞生备受瞩目。作为华为与奇瑞两大巨头携手合作的结晶,智界汽车自孕育之初便承载着众人的期待,被视为融合前沿科技与卓越制造的典范,有望在竞争激烈的新能源汽车市场中开辟出一片新天地。2024年,智界品牌首款车型智界S7正式上市,凭借华为的技术赋能,如先进的鸿蒙智能座舱、强大的HUAWEI ADS高阶智能驾驶辅助系统,以及奇瑞多年积累的深厚造车底蕴,在上市前赚足了眼球。智界S7的亮相,犹如一颗投入平静湖面的石子,激起了层层涟漪,消费者对其充满了好奇与期待,行业内也纷纷将
    用户1742991715177 2025-04-21 20:28 57浏览
  • 导读在当今快速发展的智能通讯领域,时间敏感网络(TSN)已成为确保网络通信高可靠性和低延迟的关键技术。IEEE 802.1 Qci作为TSN的一个重要组成部分,提供了一套强大的机制来管理网络流量,确保关键数据流的优先级和带宽得到保障。本文将深入探讨IEEE 802.1 Qci协议的基本概念、工作原理以及虹科提供的Qci解决方案,帮您理解如何通过精确的流量控制来提升网络的稳定性和效率。虹科TSN解决方案01# 技术简介时间敏感网络(TSN)通过IEEE 802.1 Qci标准定义了一种关
    虹科工业智能互联 2025-04-21 16:17 94浏览
  • 引言:老龄化社会的健康守护需求随着全球老龄化进程加速,老年人的健康管理与生活质量成为社会焦点。记忆衰退、用药混乱、日程遗漏等问题频发,催生了智能健康设备的市场需求。WTR096录音语音芯片,凭借其高度集成的录放音、计时时钟与计划管理功能,为老年人量身打造了一站式健康管理方案,重新定义智能语音时钟的价值。功能亮点:1. 用药安全守护:多维度提醒,拒绝遗忘多时段精准提醒:支持一天内设置多个用药时间(如早、中、晚),适配复杂用药需求。个性化语音定制:家属可录制专属提醒语音(如“上午9点,请服用降压药”
    广州唯创电子 2025-04-22 08:41 75浏览
  •   北京华盛恒辉基于GIS的电磁态势可视化系统软件是将地理空间信息与电磁态势数据相结合,通过图形化手段直观展示电磁环境态势的系统。这类软件在军事、通信、无线电管理等领域具有广泛应用,能够辅助用户进行电磁频谱分析、干扰监测、态势研判和决策支持。以下是关于此类系统的详细介绍:   应用案例   目前,已有多个电磁态势可视化系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁态势可视化系统。这些成功案例为电磁态势可视化系统的推广和应用提供了有力支持。   一、系统功能   电磁
    华盛恒辉l58ll334744 2025-04-22 11:44 48浏览
  •   北京华盛恒辉机场保障能力评估系统软件深度解析   在航空运输业快速发展的背景下,机场保障任务愈发复杂,传统人工评估方式已无法满足高效精准的管理需求。机场保障能力评估系统软件作为提升机场运行效率、保障飞行安全的关键工具,其重要性日益凸显。   应用案例   目前,已有多个机场保障能力评估系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润机场保障能力评估系统。这些成功案例为机场保障能力评估系统的推广和应用提供了有力支持。   一、系统功能模块   数据采集与整合模块  
    华盛恒辉l58ll334744 2025-04-22 10:28 54浏览
  • 在消费金融的赛道上,马上消费曾是备受瞩目的明星企业。自2015年成立以来,它以年均 30% 的净利润增速一路狂奔,成为持牌消费金融公司的标杆,2023年更是斩获19.82亿元净利润,风光无限。然而,2024年却成了马上消费的一道分水岭。2024年上半年,其营收为77.38亿元,同比下降2.11%;净利润更是同比骤降20.66%,仅为10.68亿元,创下历史最大跌幅 。与此同时,不良贷款率攀升至2.5%,不良余额高达16.54亿元,核心资本充足率降至12.72%,融资
    用户1742991715177 2025-04-21 21:29 77浏览
  •   有效数据智能分拣系统平台深度解析   一、系统概述   北京华盛恒辉有效数据智能分拣系统平台融合人工智能、机器视觉、物联网及大数据分析技术,为物流包裹、数据信息等提供高效精准的智能化分拣处理方案。通过自动化设备与智能算法协同运作,取代传统人工分拣模式,显著提升分拣效率、降低错误率,满足电商、快递及供应链不断增长的业务需求。   应用案例   目前,已有多个有效数据智能分拣系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润有效数据智能分拣系统。这些成功案例为有效数据智能分
    华盛恒辉l58ll334744 2025-04-21 16:22 124浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦