剖析一下ELF文件,动态加载与调试用得上

汽车电子嵌入式 2025-03-22 09:48

关于计算机的文件有很多种,今天分享一种用于二进制文件、可执行文件、目标代码、共享库和核心转储格式文件。

一、ELF文件简介

ELF:Executable and Linkable Format,可执行与可链接格式。

首先,你需要知道的是所谓对象文件(Object files)有三个种类:

1)可重定向文件:文件保存着代码和适当的数据,用来和其他的目标文件一起来创建一个可执行文件或者是一个共享目标文件。(目标文件或者静态库文件,即通常后缀为.a和.o的文件)

2)可执行文件:文件保存着一个用来执行的程序。(例如bash,gcc等)

3)共享目标文件:共享库。文件保存着代码和合适的数据,用来被下连接编辑器和动态链接器链接。

二、ELF文件格式

首先,ELF文件格式提供了两种视图,分别是链接视图和执行视图。

图片

链接视图是以节(section)为单位,执行视图是以段(segment)为单位。链接视图就是在链接时用到的视图,而执行视图则是在执行时用到的视图。上图左侧的视角是从链接来看的,右侧的视角是执行来看的。总个文件可以分为四个部分:

  • ELF header:描述整个文件的组织。

  • Program Header Table: 描述文件中的各种segments,用来告诉系统如何创建进程映像的。

  • sections 或者 segments:segments是从运行的角度来描述elf文件,sections是从链接的角度来描述elf文件,也就是说,在链接阶段,我们可以忽略program header table来处理此文件,在运行阶段可以忽略section header table来处理此程序(所以很多加固手段删除了section header table)。从图中我们也可以看出,segments与sections是包含的关系,一个segment包含若干个section。

  • Section Header Table: 包含了文件各个segction的属性信息,我们都将结合例子来解释。



图片


程序头部表(Program Header Table),如果存在的话,告诉系统如何创建进程映像。
节区头部表(Section Header Table)包含了描述文件节区的信息,比如大小、偏移等。
如下图,可以通过执行命令”readelf -S android_server”来查看该可执行文件中有哪些section。
图片

通过执行命令readelf –segments android_server,可以查看该文件的执行视图。
图片

这验证了第一张图中所述,segment是section的一个集合,sections按照一定规则映射到segment。那么为什么需要区分两种不同视图?
当ELF文件被加载到内存中后,系统会将多个具有相同权限(flg值)section合并一个segment。操作系统往往以页为基本单位来管理内存分配,一般页的大小为4096B,即4KB的大小。同时,内存的权限管理的粒度也是以页为单位,页内的内存是具有同样的权限等属性,并且操作系统对内存的管理往往追求高效和高利用率这样的目标。ELF文件在被映射时,是以系统的页长度为单位的,那么每个section在映射时的长度都是系统页长度的整数倍,如果section的长度不是其整数倍,则导致多余部分也将占用一个页。而我们从上面的例子中知道,一个ELF文件具有很多的section,那么会导致内存浪费严重。这样可以减少页面内部的碎片,节省了空间,显著提高内存利用率。
需要注意地是:尽管图中显示的各个组成部分是有顺序的,实际上除了 ELF 头部表以外,其他节区和段都没有规定的顺序。

三、ELF Header

首先,我们先来看下32位ELF文件中常用的数据格式:
名称大小对齐目的
Elf32_Addr44无符号程序地址
Elf32_Half22无符号中等整数
Elf32_Off44无符号文件偏移
Elf32_SWord44有符号大整数
Elf32_Word44无符号大整数
unsigned char11无符号小整数

然后我们来观察一下ELF Header的结构体:
#define EI_NIDENT 16
typedefstruct{
       unsignedchar e_ident[EI_NIDENT];
       ELF32_Half e_type;
       ELF32_Half e_machine;
       ELF32_Word e_version;
       ELF32__Addr e_entry;
       ELF32_Off e_phoff;
       ELF32_Off e_shoff;
       ELF32_Word e_flags;
       ELF32_Half e_ehsize;
       ELF32_Half e_phentsize;
       ELF32_Half e_phnum;
       ELF32_Half e_shentsize;
       ELF32_Half e_shnum;
       ELF32_Half e_shstrndx;
}Elf32_Ehdr;

e_ident :ELF的一些标识信息,前四位为.ELF,其他的信息比如大小端等
e_machine :文件的目标体系架构,比如ARM
e_version : 0为非法版本,1为当前版本
e_entry :程序入口的虚拟地址
e_phoff :程序头部表偏移地址
e_shoff :节区头部表偏移地址
e_flags :保存与文件相关的,特定于处理器的标志
e_ehsize :ELF头的大小
e_phentsize :每个程序头部表的大小
e_phnum :程序头部表的数量
e_shentsize:每个节区头部表的大小
e_shnum :节区头部表的数量
e_shstrndx:节区字符串表位置

接着运行readelf -h android_server命令,可以看到ELF Header结构的内容。

图片

或者使用010Editor的ELF模板也可以看到ELF Header结构。对比以下三类ELF文件,我们得到了以下结论:

1、e_type标识了文件类型

2、Relocatable File(.o文件)不需要执行,因此e_entry字段为0,且没有Program Header Table等执行视图

3、不同类型的ELF文件的Section也有较大区别,比如只有Relocatable File有.strtab节。

图片

Shared Object File(.so文件)

图片

Executable File(可执行文件android_server)

图片

Relocatable File(.o文件)

四、Section Header Table

一个ELF文件中到底有哪些具体的 sections,由包含在这个ELF文件中的 section head table(SHT)决定。在SHT中,针对每一个section,都设置有一个条目(entry),用来描述对应的这个section,其内容主要包括该 section 的名称、类型、大小以及在整个ELF文件中的字节偏移位置等等。我们也可以在TISCv1.2规范中找到SHT表中条目的C结构定义:

typedef struct{
    Elf32_Word sh_name;   //节区名,是节区头部字符串表节区(Section Header String Table Section)的索引。名字是一个 NULL 结尾的字符串。
    Elf32_Word sh_type;    //为节区类型
    Elf32_Word sh_flags;    //节区标志
    Elf32_Addr sh_addr;    //如果节区将出现在进程的内存映像中,此成员给出节区的第一个字节应处的位置。否则,此字段为 0。
    Elf32_Off sh_offset;    //此成员的取值给出节区的第一个字节与文件头之间的偏移。
    Elf32_Word sh_size;   //此 成 员 给 出 节 区 的 长 度 ( 字 节 数 )。
    Elf32_Word sh_link;   //此成员给出节区头部表索引链接。其具体的解释依赖于节区类型。
    Elf32_Word sh_info;       //此成员给出附加信息,其解释依赖于节区类型。
    Elf32_Word sh_addralign;    //某些节区带有地址对齐约束.
    Elf32_Word sh_entsize;    //某些节区中包含固定大小的项目,如符号表。对于这类节区,此成员给出每个表项的长度字节数。
}Elf32_Shdr;

sh_type的取值如下:

名称取值说明
SHT_NULL0此值标志节区头部是非活动的,没有对应的节区。此节区头部中的其他成员取值无意义。
SHT_PROGBITS1此节区包含程序定义的信息,其格式和含义都由程序来解释。
SHT_SYMTAB2此节区包含一个符号表。目前目标文件对每种类型的节区都只能包含一个,不过这个限制将来可能发生变化。一般,SHT_SYMTAB 节区提供用于链接编辑(指 ld 而言)的符号,尽管也可用来实现动态链接。
SHT_STRTAB3此节区包含字符串表。目标文件可能包含多个字符串表节区。
SHT_RELA4此节区包含重定位表项,其中可能会有补齐内容(addend),例如 32 位目标文件中的 Elf32_Rela 类型。目标文件可能拥有多个重定位节区。
SHT_HASH5此节区包含符号哈希表。所有参与动态链接的目标都必须包含一个符号哈希表。目前,一个目标文件只能包含一个哈希表,不过此限制将来可能会解除。
SHT_DYNAMIC6此节区包含动态链接的信息。目前一个目标文件中只能包含一个动态节区,将来可能会取消这一限制。
SHT_NOTE7此节区包含以某种方式来标记文件的信息。
SHT_NOBITS8这 种 类 型 的 节 区 不 占 用 文 件 中 的 空 间 , 其 他 方 面 和SHT_PROGBITS 相似。尽管此节区不包含任何字节,成员sh_offset 中还是会包含概念性的文件偏移
SHT_REL9此节区包含重定位表项,其中没有补齐(addends),例如 32 位目标文件中的 Elf32_rel 类型。目标文件中可以拥有多个重定位节区。
SHT_SHLIB10此节区被保留,不过其语义是未规定的。包含此类型节区的程序与 ABI 不兼容。
SHT_DYNSYM11作为一个完整的符号表,它可能包含很多对动态链接而言不必要的符号。因此,目标文件也可以包含一个 SHT_DYNSYM 节区,其中保存动态链接符号的一个最小集合,以节省空间。
SHT_LOPROC0X70000000这一段(包括两个边界),是保留给处理器专用语义的。
SHT_HIPROCOX7FFFFFFF这一段(包括两个边界),是保留给处理器专用语义的。
SHT_LOUSER0X80000000此值给出保留给应用程序的索引下界。
SHT_HIUSER0X8FFFFFFF此值给出保留给应用程序的索引上界。

五、Section


有些节区是系统预订的,一般以点开头号,因此,我们有必要了解一些常用到的系统节区。
名称类型属性含义

.bss

SHT_NOBITS

SHF_ALLOC +
SHF_WRITE

包含将出现在程序的内存映像中的为初始化数据。根据定义,当程序开始执行,系统将把这些数据初始化为 0。此节区不占用文件空间。

.comment

SHT_PROGBITS

(无)

包含版本控制信息。

.data

SHT_PROGBITS

SHF_ALLOC +
SHF_WRITE

这些节区包含初始化了的数据,将出现在程序的内存映像中。

.data1

SHT_PROGBITS

SHF_ALLOC +
SHF_WRITE

这些节区包含初始化了的数据,将出现在程序的内存映像中。

.debug

SHT_PROGBITS

(无)

此节区包含用于符号调试的信息。

.dynamic

SHT_DYNAMIC


此节区包含动态链接信息。节区的属性将包含 SHF_ALLOC 位。是否 SHF_WRITE 位被设置取决于处理器。

.dynstr

SHT_STRTAB

SHF_ALLOC

此节区包含用于动态链接的字符串,大多数情况下这些字符串代表了与符号表项相关的名称。

.dynsym

SHT_DYNSYM

SHF_ALLOC

此节区包含了动态链接符号表。

.fini

SHT_PROGBITS

SHF_ALLOC +
SHF_EXECINSTR

此节区包含了可执行的指令,是进程终止代码的一部分。程序正常退出时,系统将安排执行这里的代码。

.got

SHT_PROGBITS


此节区包含全局偏移表。

.hash

SHT_HASH

SHF_ALLOC

此节区包含了一个符号哈希表。

.init

SHT_PROGBITS

SHF_ALLOC +
SHF_EXECINSTR

此节区包含了可执行指令,是进程初始化代码的一部分。当程序开始执行时,系统要在开始调用主程序入口之前(通常指 C 语言的 main 函数)执行这些代码。

.interp

SHT_PROGBITS


此节区包含程序解释器的路径名。如果程序包含一个可加载的段,段中包含此节区,那么节区的属性将包含 SHF_ALLOC 位,否则该位为 0。

.line

SHT_PROGBITS

(无)

此节区包含符号调试的行号信息,其中描述了源程序与机器指令之间的对应关系。其内容是未定义的。

.note

SHT_NOTE

(无)

此节区中包含注释信息,有独立的格式。

.plt

SHT_PROGBITS


此节区包含过程链接表(procedure linkage table)。

.relname
.relaname

SHT_REL
SHT_RELA


这些节区中包含了重定位信息。如果文件中包含可加载的段,段中有重定位内容,节区的属性将包含 SHF_ALLOC 位,否则该位置 0。传统上 name 根据重定位所适用的节区给定。例如 .text 节区的重定位节区名字将是:.rel.text 或者 .rela.text。

.rodata
.rodata1

SHT_PROGBITS

SHF_ALLOC

这些节区包含只读数据,这些数据通常参与进程映像的不可写段。

.shstrtab

SHT_STRTAB


此节区包含节区名称。

.strtab

SHT_STRTAB


此节区包含字符串,通常是代表与符号表项相关的名称。如果文件拥有一个可加载的段,段中包含符号串表,节区的属性将包含SHF_ALLOC 位,否则该位为 0。

.symtab

SHT_SYMTAB


此节区包含一个符号表。如果文件中包含一个可加载的段,并且该段中包含符号表,那么节区的属性中包含SHF_ALLOC 位,否则该位置为 0。

.text

SHT_PROGBITS

SHF_ALLOC +
SHF_EXECINSTR

此节区包含程序的可执行指令。


六、Program Header Table


程序头部(Program Header)描述与程序执行直接相关的目标文件结构信息。用来在文件中定位各个段的映像。同时包含其他一些用来为程序创建映像所必须的信息。
可执行文件或者共享目标文件的程序头部是一个结构数组,每个结构描述了一个段或者系统准备程序执行所必须的其他信息。目标文件的“段”包含一个或者多个“节区”,也就是“段内容(Segment Contents)”。程序头部仅对可执行文件和共享目标文件有意义。

程序头部的数据结构如下:

typedef struct {  
    Elf32_Word p_type;           //此数组元素描述的段的类型,或者如何解释此数组元素的信息。
    Elf32_Off  p_offset;           //此成员给出从文件头到该段第一个字节的偏移
    Elf32_Addr p_vaddr;         //此成员给出段的第一个字节将被放到内存中的虚拟地址
    Elf32_Addr p_paddr;        //此成员仅用于与物理地址相关的系统中。System V忽略所有应用程序的物理地址信息。
    Elf32_Word p_filesz;         //此成员给出段在文件映像中所占的字节数。可以为0。
    Elf32_Word p_memsz;     //此成员给出段在内存映像中占用的字节数。可以为0。
    Elf32_Word p_flags;         //此成员给出与段相关的标志。
    Elf32_Word p_align;        //此成员给出段在文件中和内存中如何对齐。
} Elf32_phdr;

p_type:

名称取值说明
PT_NULL0此数组元素未用。结构中其他成员都是未定义的。
PT_LOAD1此数组元素给出一个可加载的段,段的大小由 p_filesz 和 p_memsz描述。文件中的字节被映射到内存段开始处。如果 p_memsz 大于p_filesz,“剩余”的字节要清零。p_filesz 不能大于 p_memsz。可加载的段在程序头部表格中根据 p_vaddr 成员按升序排列。
PT_DYNAMIC2数组元素给出动态链接信息。
PT_INTERP3数组元素给出一个 NULL 结尾的字符串的位置和长度,该字符串将被当作解释器调用。这种段类型仅对与可执行文件有意义(尽管也可能在共享目标文件上发生)。在一个文件中不能出现一次以上。如果存在这种类型的段,它必须在所有可加载段项目的前面。
PT_NOTE4此数组元素给出附加信息的位置和大小。
PT_SHLIB5此段类型被保留,不过语义未指定。包含这种类型的段的程序与 ABI不符。
PT_PHDR6此类型的数组元素如果存在,则给出了程序头部表自身的大小和位置,既包括在文件中也包括在内存中的信息。此类型的段在文件中不能出现一次以上。并且只有程序头部表是程序的内存映像的一部分时才起作用。如果存在此类型段,则必须在所有可加载段项目的前面。
PT_LOPROC~
PT_HIPROC
0x70000000~
0x7fffffff
此范围的类型保留给处理器专用语义。


好了,本文主要内容就分享到这里,具体可以参看ELF文件详细描述。

免责声明:本文素材来源网络,版权归原作者所有。如涉及作品版权问题,请与我联系删除。

评论 (0)
  • 在 AI 浪潮席卷下,厨电行业正经历着深刻变革。AWE 2025期间,万得厨对外首次发布了wan AiOS 1.0组织体超智能系统——通过AI技术能够帮助全球家庭实现从健康检测、膳食推荐,到食材即时配送,再到一步烹饪、营养总结的个性化健康膳食管理。这一创新之举并非偶然的个案,而是整个厨电行业大步迈向智能化、数字化转型浪潮的一个关键注脚,折射出全行业对 AI 赋能的热切渴求。前有标兵后有追兵,万得厨面临着高昂的研发成本与技术迭代压力,稍有懈怠便可能被后来者赶
    用户1742991715177 2025-05-11 22:44 85浏览
  •   定制软件开发公司推荐清单   在企业数字化转型加速的2025年,定制软件开发需求愈发多元复杂。不同行业、技术偏好与服务模式的企业,对开发公司的要求大相径庭。以下从技术赛道、服务模式及行业场景出发,为您提供适配的定制软件开发公司推荐及选择建议。   华盛恒辉科技有限公司:是一家专注于高端软件定制开发服务和高端建设的服务机构,致力于为企业提供全面、系统的开发制作方案。在部队政企开发、建设到运营推广领域拥有丰富经验,在教育,工业,医疗,APP,管理,商城,人工智能,部队软件、工业软件、数字化转
    华盛恒辉l58ll334744 2025-05-12 15:55 158浏览
  • 在印度与巴基斯坦的军事对峙情境下,歼10C的出色表现如同一颗投入平静湖面的巨石,激起层层涟漪,深刻印证了“质量大于数量”这一铁律。军事领域,技术优势就是决定胜负的关键钥匙。歼10C凭借先进的航电系统、强大的武器挂载能力以及卓越的机动性能,在战场上大放异彩。它能够精准捕捉目标,迅速发动攻击,以一敌多却毫不逊色。与之形成鲜明对比的是,单纯依靠数量堆砌的军事力量,在面对先进技术装备时,往往显得力不从心。这一现象绝非局限于军事范畴,在当今社会的各个领域,“质量大于数量”都已成为不可逆转的趋势。在科技行业
    curton 2025-05-11 19:09 184浏览
  •         信创产业含义的“信息技术应用创新”一词,最早公开信息见于2019年3月26日,在江苏南京召开的信息技术应用创新研讨会。本次大会主办单位为江苏省工业和信息化厅和中国电子工业标准化技术协会安全可靠工作委员会。        2019年5月16日,美国将华为列入实体清单,在未获得美国商务部许可的情况下,美国企业将无法向华为供应产品。       2019年6
    天涯书生 2025-05-11 10:41 142浏览
  • 递交招股书近一年后,曹操出行 IPO 进程终于迎来关键节点。从 2024 年 4 月首次递表,到 2025 年 4 月顺利通过中国证监会境外发行上市备案,并迅速更新招股书。而通过上市备案也标志着其赴港IPO进程进入实质性推进阶段,曹操出行最快有望于2025年内完成港股上市,成为李书福商业版图中又一关键落子。行路至此,曹操出行面临的挑战依然不容忽视。当下的网约车赛道,早已不是当年群雄逐鹿的草莽时代,市场渐趋饱和,竞争近乎白热化。曹操出行此时冲刺上市,既是背水一战,也是谋篇布局。其招股书中披露的资金
    用户1742991715177 2025-05-10 21:18 65浏览
  • 【拆解】+CamFi卡菲单反无线传输器拆解 对于单反爱好者,想要通过远程控制自拍怎么办呢。一个远程连接,远程控制相机拍摄的工具再合适不过了。今天给大伙介绍的是CamFi卡菲单反无线传输器。 CamFi 是专为数码单反相机打造的无线传输控制器,自带的 WiFi 功能(无需手机流量),不但可通过手机、平板、电脑等设备远程连接操作单反相机进行拍摄,而且还可实时传输相机拍摄的照片到 iPad 和电视等大屏设备进行查看和分享。 CamFi 支持大部分佳能和尼康单反相机,内置可充电锂离子电池,无需相机供电。
    zhusx123 2025-05-11 14:14 124浏览
  • 【拆解】+自动喷香机拆解 家里之前买了从PDD买了一个小型自动喷香机放在厕所里。来增加家里的温馨感,这东西看着确实小巧,精致。可是这东西吧,耗电就是快,没过几天就没电了。今个就让我拆开看看什么在捣鬼。如下是产品的实物和宣传图: 由于螺丝孔太小和限位很深。对于我的螺丝刀套装没用。只能使用那种螺丝刀细头,同时又长的小螺丝刀进行拆解 拧下三颗螺丝钉,用一字螺丝刀撬开外壳,内部结构就呈现在眼前。 内部构造相当简单,部件没多少。就是锂电池供电,通过MCU实现按键控制,段码屏控制,LE
    zhusx123 2025-05-10 19:55 82浏览
  •   基于 2025 年行业权威性与时效性,以下梳理国内知名软件定制开发企业,涵盖综合型、垂直领域及特色技术服务商:   华盛恒辉科技有限公司:是一家专注于高端软件定制开发服务和高端建设的服务机构,致力于为企业提供全面、系统的开发制作方案。在部队政企开发、建设到运营推广领域拥有丰富经验,在教育,工业,医疗,APP,管理,商城,人工智能,部队软件、工业软件、数字化转型、新能源软件、光伏软件、汽车软件,ERP,系统二次开发,CRM等领域有很多成功案例。   五木恒润科技有限公司:是一家专业的部队信
    华盛恒辉l58ll334744 2025-05-12 16:13 114浏览
  • 行车记录仪是长这个样子的,如下图。从前面拆去玻璃挡板,可以清晰的看见里面的部件,5个按键电路板,液晶显示屏,摄像头,喇叭,电池包,还有一块主电路板。液晶显示屏正面,如下图。液晶显示屏背面,如下图。喇叭,如下图。5个按键的电路板,MENU,DOWN,POWER,UP,OK总共5个按键功能,导线连接到主电路板上,如下图。电池包,303040聚合物锂电池,3.7V,300mAH,如下图。如下图。摄像头,如下图。拿去摄像头外壳,如下图。分离广角聚集镜头和PCB板,如下图。广角聚焦镜头,具体结构如下图。P
    liweicheng 2025-05-09 22:50 45浏览
  • 体积大小:14*11*2.6CM,电气参数:输入100V-240V/10A,输出16V24A。PCB 正面如下图。PCB 背面如下图。根据实际功能可以将PCB分成几部分:EMI滤波,PFC电路,LLC电路。EMI滤波区域,两级共模电感,LN各用了保险丝加压敏电阻,继电器(HF32FV-G)用来切除NTC的,为了提高效率点,如下图。PFC电路区域,如下图。LLC电路区域,如下图。详细分析一下该电源用的主要IC还有功率器件。AC侧采用了两颗整流桥进行并联,器件增加电流应力,如下图。共模电感都有放电针
    liweicheng 2025-05-10 20:03 49浏览
  • 蓝牙耳机是长这个样子,如下图。背部图,如下图。拆开L耳的一侧,有NFC和电池包(501230 3.7V 150mAh)如下图。电池包(501230 3.7V 150mAh)如下图。NFC正面,如下图。NFC背面,如下图。如何理解NFC的工作原理呢,搜集一下相关的资料,如下图。拆开R耳的一侧,PCB正面,如下图。PCB背面,如下图。有两组红黑的线,一组连接到了喇叭,另一组连接到了MIC头上,MIC头参数如下图。蓝牙模块(CSR 8635),有蛇形PCB走线做成天线,节约了天线成本,如下图。该IC介
    liweicheng 2025-05-10 00:45 60浏览
  • ‌磁光克尔效应(Magneto-Optic Kerr Effect, MOKE)‌ 是指当线偏振光入射到磁性材料表面并反射后,其偏振状态(偏振面旋转角度和椭偏率)因材料的磁化强度或方向发生改变的现象。具体表现为:1、‌偏振面旋转‌:反射光的偏振方向相对于入射光发生偏转(克尔旋转角 θK)。2、‌椭偏率变化‌:反射光由线偏振变为椭圆偏振(克尔椭偏率 εK)。这一效应直接关联材料的磁化状态,是表征磁性材料(如铁磁体、反铁磁体)磁学性质的重要非接触式光学探测手段,广泛用于
    锦正茂科技 2025-05-12 11:02 145浏览
  • 文/Leon编辑/cc孙聪颖‍在新能源汽车赛道的残酷洗牌中,威马、爱驰等数十个品牌黯然退场,极越、哪吒汽车也深陷经营困局,“跨界造车” 早已褪去曾经的光环,成为吞噬企业资金与精力的风险泥潭,尤其对上市公司而言,稍有不慎便会被拖入业绩泥沼。当行业共识已清晰显现 —— 新能源汽车市场这片红海正上演着惨烈的生存之战,石头科技创始人昌敬却逆势入局,掌舵极石汽车,其押注造车的抉择,正让本就面临挑战的石头科技主业雪上加霜。2025 年 4 月中旬,昌敬突然清空微博、抖音等社交媒体账号的举动,迅速引爆舆论场。
    华尔街科技眼 2025-05-09 20:53 36浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦