电源环路补偿介绍,软件和硬件分析思路是一致的

羽林君 2025-03-22 08:45

Image

1.概述

环路补偿,老的工程师经常说电源动态响应不行调调loop gain,,然后一脸懵,啥是loop gain(说的就是环路补偿)?看到他们设计的电路当时觉得好难好复杂,一直觉得电源设计最难的是环路设计和PCB设计。

2.什么是环路补偿?

这涉及到自动控制原理。首先说几个概念。
开环:指信号从输入直接到输出
闭环:指信号从输入到输出后,又反馈到输入。
传递函数:输出Vout/输入Vin,后续简称传函

开环传递函数:闭环系统中,开环传递函数是指,断开反馈后,正向传递函数G(S)*反馈传递函数H(S)
闭环传递函数:G(s)/(1+G(s)*H(s))
环路补偿指的是,在闭环系统中,在反馈上加入一种电路,用来补偿系统在扰动时的性能不足,从而维持系统的稳定或者较优的状态。补偿电路一般是运放和电阻电容组成的电路。
在这里插入图片描述

3.为什么要环路补偿?

3.1环路补偿原因

对于电源而言,引起输出变化的两个因素主要是输入和负载的变化。而这两者的变化,有可能导致输出不稳定,例如输出电压震荡剧烈或者在一定的时间内无法回到额定输出电压,这对电源来说都是致命的危害,所以要进行环路补偿,使其面对外界干扰时可以无坚不摧。
总结来说,进行环路补偿有以下两个原因:
  • 从稳态考虑,希望输入和负载变化时,输出能回到稳定值
  • 从动态考虑,系统系统在受到干扰后,能快速回到稳定值,并且超调值在可接受的范围内。

3.2环路稳定依据

以上又涉及到下面几个概念。相位裕量和幅值裕量主要表征的是稳态,带宽主要表征的是动态。
幅值裕量:当相位为-180°时,开环增益与0dB的差,一般电源要求<-10dB。

相位裕量:开环增益为1,即0dB时,对应的相位与-180°之差。考虑到元件容差以及温度对系统影响,一般要求>45°,相位裕量过低会欠阻尼,过高,会过阻尼
幅值裕量一般与相位裕量相对应,-10dB对应60°。
在这里插入图片描述
这里想顺便介绍下,为什么相位裕量越大,系统震荡越小,反应越慢?这涉及到阻尼的概念。
回到自动控制原理。以二阶系统为例说明。
在这里插入图片描述

阻尼有以下几种情况

  • <0,单位阶跃响应不稳定,即响应发散
  • 在(0,1)范围内,有一对负实部共轭复根,单位阶跃响应系统震荡
  • =1,临界阻尼,单位阶跃响应无震荡稳态输出
  • 大于1, 过阻尼,单位阶跃响应响应缓慢
    二阶系统的开环传递函数如下
在这里插入图片描述
从上式可以看出,相位裕量越大,阻尼越大,所以系统响应越缓慢。
带宽:幅频特性下,0频率和幅值下降3dB的频率之间的宽度。带宽越宽,跟踪控制信号的能力越强,表示反应速度越快。
穿越频率:开环增益曲线穿过0dB的频率点。一般选择为开关频率的1/5-1/10.
那么问题来了?为何比较点是增益为0dB,相位为-180°?
我们来看闭环的传函
在这里插入图片描述
分母为0时,传函无穷大。在这种情况下,一个固定的输入导致输出无穷大,这对实际系统来说,太可怕,这种情况下,系统就是不稳定的。分母为0要保证以下两点
在这里插入图片描述
  • 而进行环路补偿的目的,就是保证以上两个条件永远不能满足。

4.如何进行环路补偿?

4.1 补偿器的特点

上一节说明了补偿器的根本目的,就是保证开环传函的分母永远不能为0,也就是说增益要尽可能的远离0dB,相角要尽可能的远离-180°.
补偿器的目标:

  • 穿越0dB时,斜率为-1,这个可保证环路带宽不至于过小。
  • 抵消电容ESR带来的影响
  • 高频要衰减的足够快,用来抑制高频噪声
  • 增益要足够大,使得系统调节的快,且稳态精度小
  • 提高系统的阶数,消除稳态误差

所以一个成熟的开关电源补偿器应该包括以下几点:
  • 一个为0的极点,简称零极点。作用是相当于加入积分器,可保证增益。
  • 两个零点,位于LC双极点的附近,用来抵消LC极点带来的影响
  • 一个极点,位于电容ESR带来的零点处,用于抵消ESR带来的影响。因为电容ESR带来的影响不是固定的,会受外界因素的影响,所以需要抵消其影响。
  • 一个高频极点,用来让高频信号衰减的更快。
    什么时候抵消零点,什么时候抵消极点,抵消哪种零点和极点,为什么要这样抵消?
    为了弄清楚以上问题,我们必须明白零极点对系统带来哪些影响。

4.1.1 极点的影响

极点:开环传递函数中,分母为0的点。
极点对传函的影响如下:

  • 每增加一个极点,相位就减小-90°。我们平时见的低通滤波器就是单极点系统。
  • 影响特征根,对应运动模态
  • 导致增益下降

4.1.2 零点的影响

零点:开环传递函数中,分子为0的点。
极点对传函的影响如下:

  • 每增加一个极点,相位就增加+90°。
  • 影响运动模态对应的比例
  • 导致增益上升,系统响应加快。

零极点的影响导致了在低频时增益大,高频时增益小,所以增益曲线呈下降趋势,可以看成一个低通滤波器,这也可以与穿越频率决定环路响应快慢对应起来,因为穿越频率越大,输入信号通过的频率越多,越能还原原本的波形,所以响应快。

4.2 补偿器的分类

补偿器一般有三种:单极点补偿,双极点单零点补偿,三极点双零点补偿。极点数总是多于零点数,这样可提高系统的阶数,保持稳定。
1. 单极点补偿(type I)

在这里插入图片描述
传递函数如下:
在这里插入图片描述
在这里插入图片描述
2. 双极点单零点(type II)
适用于功率部分只有一个极点的补偿。如:所有电流型控制和非连续方式电压型控制。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
3. 三极点双零点(type III)
适用于输出带LC谐振的拓扑,如所有没有用电流型控制的电感电流连续方式拓扑。
在这里插入图片描述
在这里插入图片描述

4.3 buck电路的环路设计

设计环路的基本步骤如下:

  1. 根据已知参数确定功率级传函
  2. 确定穿越频率(一般为开关频率的1/10)
  3. 确定补偿器的类型
  4. 计算电阻电容参数

下面对两种控制型的buck电路环路进行设计介绍。
电压控制型buck电路是指,用buck的输出电压作为反馈,进行比较后产生PWM波。一般采用typeIII补偿器进行补偿。
下面是电压型buck电路的原理框图,包括pwm产生电路,主功率电路,输出滤波,误差放大器。
在这里插入图片描述
PWM产生电路的传递函数
为Gpwm=D/Vcomp:
在这里插入图片描述
Vram是三角波的峰峰值。
主功率电路的传函为:Vo/D=Vin
LC滤波电路(加上电容的ESR)的传函为
在这里插入图片描述
电容的ESR带来的零点频率为Wesr=1/(ESR*C)
所以从误差放大器出来到Vo的传函为:
在这里插入图片描述
下面进入误差放大器的设计。
1)求出原传函的零极点
2)确定穿越频率为开关频率的1/10
3)让补偿器的零点等于传函的LC极点,选择合适的电阻电容
4)让补偿器的某一极点等于电容esr带来的零点,确定电阻电容
5)高频极点为穿越频率,确定电阻电容
6)重新求相位裕量以及幅值裕量

4.3.2 电流控制型

电流型buck电路是指,不仅采用电压作为电压负反馈,而且还要电感电流(一般是峰值电流)作为电流反馈,由于是电感电流,所以少了一个L带来的极点,一般采用typeII型补偿器进行补偿。

在这里插入图片描述
PWM产生电路的传递函数Vc/iL=Rs,Rs为mos电流的采样电阻
主功率回路+滤波电路传函:
在这里插入图片描述
在这里插入图片描述
所以从电压误差放大器出来的传函为
在这里插入图片描述
接下来的误差放大器的设计步骤,与上一节电压控制型误差放大器设计步骤一致。
电流型buck的优点是补偿电路简单,响应快,但是缺点是容易出现次谐波震荡,需要加入斜坡补偿。
下面介绍次谐波震荡和斜坡补偿。
(1)次谐波震荡
次谐波震荡:一般出现在电流控制模式下,电流连续且占空比大于50%,出现1/2的频率
产生原因:占空比大于50%后,电流上升时间大于下降时间,使得还未下降到初始值就进入电流上升期,由于到达峰值电流时间短,所以占空比缩小,这样看起来出现大小波的情况,也就是次谐波。若出现扰动,系统会不稳定。
这样看来,重载比轻载容易出现次谐波振荡,因为同样输入条件下,重载要的占空比大。
在这里插入图片描述
要求电流上升斜率大于下降斜率,否则会不稳定,推论如下,m1是电感电流的上升斜率,m2是电流的下降斜率
在这里插入图片描述
(2) 斜坡补偿
在电流上叠加一个负的固定斜坡的电流,减少电流环在1/2谐波的增益。实质是使得电流控制模式看起来更像电压控制模式,因为电压控制模式就是采用固定斜坡的锯齿波。
在这里插入图片描述
如上图所示,在控制电压上,叠加一个下降斜率为m3的斜坡,这会使得电流上升时间缩短,下降时间延长,只要保证m3>m2/2系统就能稳定。为了方便,在buck电路中,选择m3=m2=Vo/L
斜坡补偿后,偏差会越来越小。
在这里插入图片描述
参考书籍:
《精通开关电源设计
《开关变换器的建模与控制》
来源:https://blog.csdn.net/dianji2015_/article/details/109636020

‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧  END  ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

推荐阅读

【1】jetson nano开发使用的基础详细分享

【2】Linux开发coredump文件分析实战分享

【3】CPU中的程序是怎么运行起来的 必读

【4】cartographer环境建立以及建图测试

【5】设计模式之简单工厂模式、工厂模式、抽象工厂模式的对比


羽林君 某嵌入式程序猿分享技术、生活、人生云云文字。如有诗云:去年今日此门中,人面桃花相映红。人面不知何处去,桃花依旧笑春风。
评论 (0)
  •   电磁信号模拟平台解析   北京华盛恒辉电磁信号模拟平台作为模拟复杂电磁环境的系统,在无线通信、电子对抗等多领域广泛应用。以下从功能、技术特性、应用场景及发展趋势展开详细解读。   应用案例   目前,已有多个电磁信号模拟平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁信号模拟平台。这些成功案例为电磁信号模拟平台的推广和应用提供了有力支持。   一、核心功能   复杂电磁环境建模:构建贴近真实的电磁环境,涵盖各类干扰因素。   多通道信号模拟:模拟多通道电磁信号
    华盛恒辉l58ll334744 2025-04-21 15:10 79浏览
  •   有效数据智能分拣系统详解   北京华盛恒辉有效数据智能分拣系统融合人工智能、大数据分析与机器学习等前沿技术,实现海量数据自动化分类、筛选、整理及分配。凭借强大的数据处理效能,助力企业精准提取关键信息,优化决策流程,提升运营效率。以下从系统架构、核心功能、技术特性、应用场景及发展趋势展开解读。   应用案例   目前,已有多个有效数据智能分拣系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润有效数据智能分拣系统。这些成功案例为有效数据智能分拣系统的推广和应用提供了有力支持。
    华盛恒辉l58ll334744 2025-04-21 16:46 79浏览
  • 导读在智能汽车技术发展浪潮中,车辆控制系统的智能化、网络化已成为行业发展的必然趋势。虹科PEAK智行定位车控系统,集成了尖端科技,能够实现车辆全方位监控与控制。从实时GPS定位到CAN/CAN FD信号处理,虹科方案不仅提升了车辆的智能化水平,更在安全性和效率上迈出了革命性的一步。虹科PEAK智行定位车控系统,通过CAN/CAN FD信号实现车辆的精准控制,包括加减速、转弯、倒退等动作,模拟真实车辆平台的动态表现。该系统搭载了虹科各型号设备,通过紧密协作,实时反映车辆位置、总线报文等信息,实现车
    虹科汽车智能互联 2025-04-21 16:04 61浏览
  •   海上安全事件应急处置系统解析   北京华盛恒辉海上安全事件应急处置系统是为应对船舶碰撞、火灾等海上突发事件打造的综合管理体系,通过技术与协同机制,实现快速响应救援、优化资源配置,守护海上生命、财产与环境安全。以下从系统构成、功能、技术、应用及趋势展开阐述。   应用案例   目前,已有多个海上安全事件应急处置系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润海上安全事件应急处置系统。这些成功案例为海上安全事件应急处置系统的推广和应用提供了有力支持。   一、系统构成
    华盛恒辉l58ll334744 2025-04-21 15:50 66浏览
  •  霍尔效应自发现以来,已渗透至多个行业领域,其核心应用可归纳为以下几类:一、‌电子与半导体行业‌1、‌半导体器件开发与测试‌① 通过测量霍尔系数和电阻率,判断器件的导电类型(N型/P型)及载流子浓度分布,优化器件设计和制造工艺‌。② 监控晶圆掺杂水平和表面缺陷,提高集成电路良率‌。2、‌磁场传感器制造与校准‌测试霍尔传感器的灵敏度、线性度、响应时间等参数,确保其在汽车、工业控制等场景下的可靠性‌。3、‌电磁测量仪器‌基于霍尔电压与磁场强度的线性关系,开发高斯计、电流表、功率计等‌。二、
    锦正茂科技 2025-04-21 13:17 42浏览
  •   海上安全事件应急处置系统平台深度解析   一、平台概述   北京华盛恒辉海上安全事件应急处置系统平台融合现代信息技术、通信技术、GIS、大数据分析及 AI 等技术,旨在快速响应船舶碰撞、火灾、溢油等海上突发事件,实现科学决策与高效资源调配,保障海上生命财产安全、减少环境污染。   应用案例   目前,已有多个海上安全事件应急处置系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润海上安全事件应急处置系统。这些成功案例为海上安全事件应急处置系统的推广和应用提供了有力支持
    华盛恒辉l58ll334744 2025-04-21 15:21 75浏览
  • 导读在当今快速发展的智能通讯领域,时间敏感网络(TSN)已成为确保网络通信高可靠性和低延迟的关键技术。IEEE 802.1 Qci作为TSN的一个重要组成部分,提供了一套强大的机制来管理网络流量,确保关键数据流的优先级和带宽得到保障。本文将深入探讨IEEE 802.1 Qci协议的基本概念、工作原理以及虹科提供的Qci解决方案,帮您理解如何通过精确的流量控制来提升网络的稳定性和效率。虹科TSN解决方案01# 技术简介时间敏感网络(TSN)通过IEEE 802.1 Qci标准定义了一种关
    虹科工业智能互联 2025-04-21 16:17 67浏览
  • 导读Linux驱动程序领域再添新成员,PLIN驱动程序现已正式发布。这一新驱动程序为使用LIN接口的用户提供了一个便捷、高效的解决方案。本文将展示如何安装PLIN驱动程序,以及如何在Linux环境下进行基本的PLIN通信操作,确保您能够快速掌握并应用这一新工具。继我们在Linux环境下成功推出CAN/CAN FD接口驱动程序后,现在我们为LIN接口带来了同样兼容Linux的驱动程序。免费软件包中不仅包含了驱动程序本身,还提供实用工具和一份易于理解的快速入门指南。用户下载后,需要根据当前使用的Li
    虹科汽车智能互联 2025-04-21 14:56 55浏览
  •   有效数据智能分拣系统平台深度解析   一、系统概述   北京华盛恒辉有效数据智能分拣系统平台融合人工智能、机器视觉、物联网及大数据分析技术,为物流包裹、数据信息等提供高效精准的智能化分拣处理方案。通过自动化设备与智能算法协同运作,取代传统人工分拣模式,显著提升分拣效率、降低错误率,满足电商、快递及供应链不断增长的业务需求。   应用案例   目前,已有多个有效数据智能分拣系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润有效数据智能分拣系统。这些成功案例为有效数据智能分
    华盛恒辉l58ll334744 2025-04-21 16:22 99浏览
  • 精益生产咨询师证/精益管理专业人员证/精益生产工程师证虽然在名称上有一些差异,但其实实际区别并不大,目前类似的证书以ILSSI-CLMP较为得到国际上的认可,当然,你不会因为有一张精益生产咨询师证,而会有人马上请你做咨询师,因为除了知识之外,你还要有充足经验、热诚、沟通能力等等,这些也是我们招聘咨询师的基本要求。那么,有没有必要取得CLMP证书呢?这主要取决于你自己对职业发展的规划和自我提升的意志。CLMP是什么?CLMP的全称是Certified Lean Management Profess
    优思学院 2025-04-21 14:29 37浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,深耕电子元器件领域数十载,专为汽车与工业客户提供车规级安全芯片及配套服务。公司整合硬件供应、软件SDK与技术支持为一体,配备专业团队提供选型咨询与现场指导,助力客户实现完整的芯片应用解决方案。在全球芯片供应链重构的大背景下,我国车规级芯片产业正迎来前所未有的发展机遇。北京贞光科技有限公司作为紫光同芯授权代理商,深耕电子元器件领域数十载,专为汽车与工业客户提供车规级安全芯片及配套服务。公司整合硬件供应、软件SDK与技术支持为一体,配备专业团队提供选型咨询
    贞光科技 2025-04-21 16:10 54浏览
  • 导读在汽车测试和现代工业领域,功耗控制与效率优化是工程师们不断追求的目标。虹科PCAN Router系列设备以其卓越的性能和灵活性,为CAN/CAN FD网络中的报文转换提供了高效解决方案。本文将探讨虹科PCAN Router系列设备如何在保持高效工作的同时,通过低功耗模式和高效唤醒功能,满足对能耗有严格要求的应用场景。虹科PCAN Router系列网关1 低功耗模式的优势与实现在实际的工作场景中,可能会出现一些对功耗要求存在限制的情况。鉴于此,可以灵活设置虹科PCAN Router系
    虹科汽车智能互联 2025-04-21 15:45 56浏览
我要评论
0
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦