STM32F103驱动SDIO wifi Marvell8801/Marvell88w8801 介绍(十) ---- 移植TCP/IP协议栈LWIP

原创 专注于无线通信的蓬勃 2020-01-10 14:47

代码工程的GITHUB连接:
https://github.com/sj15712795029/stm32f1_marvell88w8801_marvell8801_wifi

Marvell自己实现驱动系列文章分为几篇介绍:


















每篇更新打开专栏可以看到

关于lwip raw api的移植介绍主要分为以下图示几部分
在这里插入图片描述
1)LWIP的概述
2)LWIP对接网卡驱动的编写
3)LWIP时钟的编写
4)LWIP RAW API INIT的编写

1. LWIP概述

lwip是瑞典计算机科学院(SICS)的Adam Dunkels 开发的一个小型开源的TCP/IP协议栈。实现的重点是在保持TCP协议主要功能的基础上减少对RAM 的占用。
另外说下uip这个这个大牛实现的
LwIP是Light Weight (轻型)IP协议,有无操作系统的支持都可以运行。LwIP实现的重点是在保持TCP协议主要功能的基础上减少对RAM 的占用,它只需十几KB的RAM和40K左右的ROM就可以运行,这使LwIP协议栈适合在低端的嵌入式系统中使用。
lwIP协议栈主要关注的是怎么样减少内存的使用和代码的大小,这样就可以让lwIP适用于资源有限的小型平台例如嵌入式系统。为了简化处理过程和内存要求,lwIP对API进行了裁减,可以不需要复制一些数据。
lwip提供三种API模式:1)RAW API 2)lwip API 3)BSD API。
RAW API把协议栈和应用程序放到一个进程里边,该接口基于函数回调技术,使用该接口的应用程序可以不用进行连续操作。不过,这会使应用程序编写难度加大且代 码不易被理解。为了接收数据,应用程序会向协议栈注册一个回调函数。该回调函数与特定的连接相关联,当该关联的连接到达一个信息包,该回调函数就会被协议 栈调用。这既有优点也有缺点。优点是既然应用程序和TCP/IP协议栈驻留在同一个进程中,那么发送和接收数据就不再产生进程切换。主要缺点是应用程序不 能使自己陷入长期的连续运算中,这样会导致通讯性能下降,原因是TCP/IP处理与连续运算是不能并行发生的。这个缺点可以通过把应用程序分为两部分来克 服,一部分处理通讯,一部分处理运算。
lwip API把接收与处理放在一个线程里面。这样只要处理流程稍微被延迟,接收就会被阻塞,直接造成频繁丢包、响应不及时等严重问题。因此,接收与协议处理必须 分开。LwIP的作者显然已经考虑到了这一点,他为我们提供了 tcpip_input() 函数来处理这个问题, 虽然他并没有在 rawapi 一文中说明。 讲到这里,读者应该知道tcpip_input()函数投递的消息从哪里来的答案了吧,没错,它们来自于由底层网络驱动组成的接收线程。我们在编写网络驱动时, 其接收部分以任务的形式创建。 数据包到达后, 去掉以太网包头得到IP包, 然后直接调用tcpip_input()函数将其 投递到mbox邮箱。投递结束,接收任务继续下一个数据包的接收,而被投递得IP包将由TCPIP线程继续处理。这样,即使某个IP包的处理时间过长也不 会造成频繁丢包现象的发生。这就是lwip API。
BSD API提供了基于open-read-write-close模型的UNIX标准API,它的最大特点是使应用程序移植到其它系统时比较容易,但用在嵌入式系统中效率比较低,占用资源多。这对于我们的嵌入式应用有时是不能容忍的。
我们因为是裸机,所以我们真是针对raw api移植
正常的移植应该包含以下几个部分:
1)LWIP头文件的移植
2)LWIP对接网卡驱动的编写
3)LWIP时钟的摆弄些
4)LWIP RAW API INIT的编写
此部分我们推荐一本书,《嵌入式网络那些事-STM32物联实战》,我们对LWIP头文件的移植不做介绍,可以看下本书

2. LWIP对接网卡驱动的编写

主要用到的函数是:
1)low_level_init
2)low_level_output
3)low_level_input
1)其中low_level_init主要是用于网卡的mac地址注册到lwip中,其中调用这个的API是ethernetif_init,调用ethernetif_init的这个API是netif_add,把mac address填写到netif_add第一个参数中的hwaddr结构体体成员中
2)这个是lwip往网卡驱动发送函数,主要实现如下


/**
 * This function should do the actual transmission of the packet. The packet is
 * contained in the pbuf that is passed to the function. This pbuf
 * might be chained.
 *
 * @param netif the lwip network interface structure for this ethernetif
 * @param p the MAC packet to send (e.g. IP packet including MAC addresses and type)
 * @return ERR_OK if the packet could be sent
 *         an err_t value if the packet couldn't be sent
 *
 * @note Returning ERR_MEM here if a DMA queue of your MAC is full can lead to
 *       strange results. You might consider waiting for space in the DMA queue
 *       to become available since the stack doesn't retry to send a packet
 *       dropped because of memory failure (except for the TCP timers).
 */

static err_t
low_level_output(struct netif *netif, struct pbuf *p)
{
    //struct ethernetif *ethernetif = netif->state;
    //struct pbuf *q;
    u8_t*buffer;

#if ETH_PAD_SIZE
    pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */
#endif

    buffer = mrvl88w8801_get_send_data_buf();
    pbuf_copy_partial(p, buffer, p->tot_len, 0);

    //printf("low_level_output dump\n ");
    //extern void hw_hex_dump(uint8_t *data,int len);
    //hw_hex_dump(buffer,p->tot_len);

    mrvl88w8801_send_date(buffer,p->tot_len);

    MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p->tot_len);
    if (((u8_t*)p->payload)[0] & 1)
    {
        /* broadcast or multicast packet*/
        MIB2_STATS_NETIF_INC(netif, ifoutnucastpkts);
    }
    else
    {
        /* unicast packet */
        MIB2_STATS_NETIF_INC(netif, ifoutucastpkts);
    }
    /* increase ifoutdiscards or ifouterrors on error */

#if ETH_PAD_SIZE
    pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */
#endif

    LINK_STATS_INC(link.xmit);
    return ERR_OK;
}

3)low_level_input这个函数是LWIP从网卡驱动接收封包的函数,主要实现如下


/**
 * Should allocate a pbuf and transfer the bytes of the incoming
 * packet from the interface into the pbuf.
 *
 * @param netif the lwip network interface structure for this ethernetif
 * @return a pbuf filled with the received packet (including MAC header)
 *         NULL on memory error
 */
static struct pbuf *
low_level_input(struct netif *netif)
{
    //struct ethernetif *ethernetif = netif->state;
    struct pbuf *p;
    u16_t len;


    RxPD *rx_packet = (RxPD *)netif->state;
    rx_packet->payload = (u8_t *)((u8_t *)rx_packet   rx_packet->rx_pkt_offset   4);

    /* Obtain the size of the packet and put it into the "len"
       variable. */
    len = rx_packet->rx_pkt_length;
    //printf("low_level_input dump\n ");
    //extern void hw_hex_dump(uint8_t *data,int len);
    //hw_hex_dump(rx_packet->payload,len);
#if ETH_PAD_SIZE
    len  = ETH_PAD_SIZE; /* allow room for Ethernet padding */
#endif

    /* We allocate a pbuf chain of pbufs from the pool. */
    p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);

    if (p != NULL)
    {

#if ETH_PAD_SIZE
        pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */
#endif

        pbuf_take(p, rx_packet->payload, len); // 将数据帧内容复制到pbuf中


        MIB2_STATS_NETIF_ADD(netif, ifinoctets, p->tot_len);
        if (((u8_t*)p->payload)[0] & 1)
        {
            /* broadcast or multicast packet*/
            MIB2_STATS_NETIF_INC(netif, ifinnucastpkts);
        }
        else
        {
            /* unicast packet*/
            MIB2_STATS_NETIF_INC(netif, ifinucastpkts);
        }
#if ETH_PAD_SIZE
        pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */
#endif

        LINK_STATS_INC(link.recv);
    }
    else
    {
        LINK_STATS_INC(link.memerr);
        LINK_STATS_INC(link.drop);
        MIB2_STATS_NETIF_INC(netif, ifindiscards);
    }
    return p;
}

此部分介绍有点简短,详细看下上面推荐的那本书以及我的裸机代码,详细用心这部分简单的很,我当初移植这部分用了半天不到。

3. LWIP时钟的编写

LWIP的时钟函数主要用于LWIP协议栈内部的超时处理,主要移植的API是sys_now,此部分我做的相当简单,原理就是开一个systick,10ms一个中断,定义一个全局变量,每次中断发生全局timer变量 10,sys_now就是返回这个变量
如下:

uint32_t sys_now(void)
{
    return sys_time;
}

void SysTick_Handler(void)
{
    sys_time  = 1000/CONF_BSP_TICKS_PER_SEC;
}

另外,需要注意的一点是:lwip需要一直调用sys_check_timeouts();这个函数来判断是否超时

4. LWIP RAW API INIT的编写

此部分我又封装了一个层API,直接上代码

void ethernet_sta_driver_init(uint8_t *mac_address)
{
    struct ip4_addr ipaddr, netmask, gw;

    memcpy(mrvl88w8801_lwip.hwaddr, mac_address, MAC_ADDR_LENGTH); // 将获得的MAC地址复制到全局变量中

    printf("LWIP:STATIC IP start\n");
    IP4_ADDR(&ipaddr, 192, 168, 1, 1); // IP地址
    IP4_ADDR(&netmask, 255, 255, 255, 0); // 子网掩码
    IP4_ADDR(&gw, 192, 168, 1, 1); // 网关
    netif_add(&mrvl88w8801_lwip, &ipaddr, &netmask, &gw, NULL, ethernetif_init, ethernet_input); // 添加WiFi模块到lwip中

#if LWIP_DNS
    IP4_ADDR(&ipaddr, 8, 8, 8, 8); // 首选DNS服务器
    dns_setserver(0, &ipaddr);
    IP4_ADDR(&ipaddr, 114, 114, 114, 114); // 备用DNS服务器
    dns_setserver(1, &ipaddr);
#endif

    netif_set_default(&mrvl88w8801_lwip); // 设为默认网卡
    netif_set_up(&mrvl88w8801_lwip); // 允许lwip使用该网卡

    lwip_init();
    netbiosns_init();
    netbiosns_set_name("IoT_lwos_wifi");
}

此部分我之所以手动分配了IP地址,不是采取DHCP不设置IP地址的原因是:此部分IP主要作用是给AP是用,默认AP的IP地址是:192.168.1.1

专注于无线通信的蓬勃 朝气蓬勃——不积跬步 无以至千里, 不积小流 无以成江海
评论
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 39浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 53浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 48浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 93浏览
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 33浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 96浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 91浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 78浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 146浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 37浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 51浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦