通过自举扩展运算放大器工作范围

原创 亚德诺半导体 2025-03-07 18:19

亚德诺半导体置顶.gif

当现成的运算放大器(op amp)不能提供特定应用所需的信号摆幅范围时,工程师面临两种选择:使用高压运算放大器或设计分立解决方案,不过这两种选择的成本可能都很高。


对许多应用来说,第三种选择——自举——可能是比较廉价的替代方案。除了动态性能要求极为苛刻的应用,自举电源电路的设计是相当简单的。



自举简介

常规运算放大器要求其输入电压在其电源轨范围内。如果输入信号可能超过电源轨,可以通过电阻衰减过大输入,使这些输入降至电源范围以内的电平。这样处理并不理想,因为它会对输入阻抗、噪声和漂移产生不利影响。同样的电源轨也会限制放大器输出,闭环增益的大小存在一个限值,以避免将输出驱动到饱和状态。


因此,如果要求处理输入和/或输出上的大信号偏离,则需要宽电源轨和能在这些电源轨上工作的放大器。ADI 的 24V 至 220V 精密运算放大器 ADHV4702-1 是适合这种情况的出色选择,不过自举低压运算放大器也能满足应用要求。是否使用自举主要取决于动态要求和功耗限制。


自举会创建一个自适应双电源,其正负电压不是以地为基准,而是以输出信号的瞬时值为基准,有时称之为飞轨(flying rail) 配置。在这种配置中,电源随着运算放大器的输出电压(VOUT) 上下移动。因此,VOUT始终处于中间电源电压,并且电源电压能够相对于地移动。使用自举可以非常容易地实现这种自适应双电源。


实际上,自举必须符合一些准则,有些准则微不足道,但没有一个准则是特别麻烦的。如下是最基本的准则:

  • 输出负载不得过大。

  • 响应速度不得低于运算放大器的压摆率。

  • 必须能处理所需的电压水平和相关的功耗。



工作原理

飞轨概念是指正负电源轨连续调整,使其电压始终关于输出电压对称。这样,输出始终位于电源范围内。


电路架构包括一对互补分立晶体管和一个阻性偏置网络。NPN 发射极(或 N 沟道 MOSFET 的源极引脚)提供 VCC, PNP 发射极(或 P 沟道 MOSFET 的源极引脚)用作 VEE。晶 体管被偏置,使得所需的电源电压出现在放大器的+VS和–VS 引脚上,这些电压通过电阻分压器从高压电源获得。图 1 显 示了简化高压跟随器原理图。

图 1. 简化高压跟随器原理图


理论上,自举可以为任何运算放大器提供任意高的信号顺从电压。而在实际上,电源调整比例越大,动态性能越差,因为运算放大器的压摆率限制了电源对动态信号的响应速度。放大器在最大额定电源电压或接近该电压下工作时,电源引脚为跟上动态信号而需要横越的范围最小。当运算放大器在接近其最高额定电源电压下工作时,其他误差源(如噪声增益)也会降低。


不需要电源移动很远(或非常快)的低频和直流应用,是自举的最佳候选应用。因此,高压放大器能提供比动态特性相当的低压放大器更好的动态性能,尤其是当二者均偏置为各自的最大工作电源电压并且自举到相同信号范围时。自举也会影响直流性能,因此在直流精度和高电压两方面均经过优化的运算放大器可提供自举配置能实现的最佳直流和交流性能组合。



采用ADHV4702-1 的范围扩展器设计

ADHV4702-1 是一款精密 220 V运算放大器。有了该器件,就不需要自举传统低压运算放大器,220 V以下信号范围的高压设计得以简化。如果应用需要更高电压,那么可以应用自举技术,轻松地将电路工作范围增加两倍以上。下面说明一个基于ADHV4702-1 的 500 V放大器设计示例。


电压范围

如上所述,扩展器电路的范围在理论上是无限的,但存在如下一些实际限制:

  • 电源电压和电流额定值

  • 电阻和场效应晶体管(FET)功耗

  • FET 击穿电压


直流偏置电平

首先,考虑提供给放大器的电源电压。任何在器件额定电源电压范围内的电压都有效。然而,功耗是基于所选择的工作电压在放大器和 FET 之间分配。对于给定的原始电源电压,运算放大器电源电压越低,FET 中的漏源电压(VDS)越高,功耗也相应地进行分配。应选择适当的运算放大器电源电压,从而以最有利于散热的方式在器件之间分配功耗。其次,使用下式计算将原始电源电压(VRAW)降低到放大器期望电源电压(VAMP)所需的分压比:



其中,RTOP为顶部电阻,RBOT为底部电阻。


对于下例,考虑运算放大器标称电源电压为±100 V。对于需要±250 V 摆幅范围的应用,通过下式计算分压比:



然后,使用便于获得的标准值电阻设计电阻分压器,尽可能接近地实现此分压比。请注意,由于涉及高电压,电阻功耗可能比预期要高。


静态功耗

对于所选电阻值,应选择能够应对相应静态功耗的电阻尺寸。相反,如果电阻的物理尺寸受限,应选择适当的电阻值来将散热限制在额定范围内。


在该示例中,RTOP达到 150 V,RBOT达到 100 V。使用额定功率为 1 /2瓦的 2512 电阻,设计必须将每个电阻器的功耗(V2/R) 限制在 0.5 W 以下。计算每个电阻的最小值,如下所示:



将较高值电阻(45kΩ)作为功耗的限制因素,RBOT 值产生一个 2.5:1 分压器,同时观测静态功耗限值为



其功耗为(100 V)2/30 kΩ = 0.33 W。


瞬时功耗

考虑到电阻的瞬时电压取决于放大器的输出电压以及电源电压,本例中任何时刻每个分压器上的电压可能高达350 V(VCC = 250 V 且 VOUT = –100 V)。正弦输出波形在 VCC和 VEE分压器中产生 相同的平均功耗,但任何非零平均输出都会导致一个分压器 的功耗高于另一个分压器的功耗。对于满量程直流输出(或方波),瞬时功耗为最大功耗。


在此示例中,为将瞬时功耗保持在 0.5 W 以下,每个分压器中两个电阻之和(RSUM)不得小于以下值:


因此,电阻比为 1.5:1(对于 2.5:1 分压器)时,各个电阻的最小值如下:

  • RTOP = 147 kΩ 

  • RBOT = 98 kΩ

FET 选择

承受最坏情况偏置条件所需的击穿电压主要决定 FET的选择;当输出饱和,使得一个 FET 处于最大 VDS,另一个 FET 处于最小 VDS 时,便可明白这一点。在前面的示例中,最 高绝对 VDS 约为 300 V,即总原始电源电压(500 V)减去放大器的总电源电压(200 V)。因此,FET 必须承受至少 300 V 电压而不被击穿。


功耗必须针对最坏情况 VDS 和工作电流来计算,并且必须选择指定在此功率水平下工作的 FET。


接下来考虑 FET 的栅极电容,因为它会与偏置电阻一起形成一个低通滤波器。击穿电压较高的 FET 往往具有较高的栅极电容,而且偏置电阻往往为 100 kΩ,因此不需要多少栅极电容就能显著降低电路的速度。从制造商的数据手册中获得栅极电容值,计算 RTOP和 RBOT并联组合所形成的极点频率。


偏置网络的频率响应必须始终快于输入和输出信号,否则放大器的输出可能超出其自身的电源范围。暂时偏离到放大器电源轨之外会有损坏输入的风险,而暂时饱和或压摆受限会有造成输出失真的风险。任何一种状况都可能导致负反馈暂时丢失和不可预测的瞬态行为,甚至可能因为某些运算放大器架构中的相位反转而闩锁。



性能

直流线性度

图 2 显示了增益误差与输入电压的关系(直流线性度),增益为 20,电源为±140 V。


图2. 增益误差与输入电压的关系


压摆率

图 3 显示了压摆率曲线,增益为 20,电源为±140 V,测量值为 20.22 V/μs。

图 3. 压摆率



实现更高速度的权衡

功耗

如前所述,工作电压较高时,FET 的击穿电压(和相关的栅极电容)以及电阻值也必须较高。较高的电阻和电容值都会造成带宽降低,唯一可用的调整因素是电阻值。降低电阻值会提高带宽,但代价是功耗增加。


空间

低阻值、高功率的电阻尺寸较大,需占用较多电路板空间。以电容的形式在RBOT上增加一些引线补偿可以改善电路的频率响应。此电容与 RBOT和 RTOP电阻形成一个零点,抵消 FET 栅极电容所形成的极点。极点和零点相消,因此可以选择更高阻值的电阻,从而降低直流功耗。



结论

在需要较高电压但使用典型高压运算放大器不经济的应用中,常常会让常规运算放大器自举。自举有其优点和缺点。还有一个选择,ADHV4702-1 提供一种高达 220 V的精密高性能解决方案,无需自举。但是,当信号范围要求超过 220 V时, 该器件可以自举以处理超过标称信号范围两倍以上的电压,同时提供比自举低压放大器更高的性能。





👇点击探索ADI“芯”世界

·
·


亚德诺半导体 Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。
评论 (0)
  • 感谢面包板论坛组织的本次测评活动,本次测评的对象是STM32WL Nucleo-64板 (NUCLEO-WL55JC) ,该测试板专为LoRa™应用原型构建,基于STM32WL系列sub-GHz无线微控制器。其性能、功耗及特性组合经过精心挑选,支持通过Arduino® Uno V3连接,并利用ST morpho接头扩展STM32WL Nucleo功能,便于访问多种专用屏蔽。STM32WL Nucleo-64板集成STLINK-V3E调试器与编程器,无需额外探测器。该板配备全面的STM
    无言的朝圣 2025-05-13 09:47 189浏览
  • 在当下的商业版图中,胖东来宛如一颗璀璨的明星,散发着独特的光芒。它以卓越的服务、优质的商品以及独特的企业文化,赢得了消费者的广泛赞誉和业界的高度关注。然而,近期胖东来与自媒体博主之间的一场激烈对战,却如同一面镜子,映照出了这家企业在光环背后的真实与挣扎,也引发了我们对于商业本质、企业发展以及舆论生态的深入思考。​冲突爆发:舆论场中的硝烟弥漫​2025年4月,抖音玉石博主“柴怼怼”(粉丝约28万)突然发难,发布多条视频直指河南零售巨头胖东来。他言辞犀利,指控胖东来在玉石销售方面存在暴利行为,声称其
    疯人评 2025-05-14 13:49 59浏览
  • 在全球能源结构转型加速推进与政策驱动的双重作用下,油气输送、智慧水务及化学化工等流体计量场景正面临效率革命与智能化升级的迫切需求。传统机械式流量计虽在工业初期有效支撑了基础计量需求,但其机械磨损、精度衰减与运维困难等固有缺陷已难以适应现代工业对精准化、智能化与可持续发展的多维诉求。在此背景下,超声波流量计则凭借着高精度探测、可实时监测、无侵入式安装、无阻流部件、易于维护与绿色环保等优势实现了突破性发展,成为当代高精度流体计量体系中不可或缺的重要一环。该技术不仅是撬动能源利用效率提升、支撑智慧管网
    华普微HOPERF 2025-05-14 11:49 45浏览
  •   军事领域仿真推演系统的战略价值与发展前瞻   北京华盛恒辉仿真推演系统通过技术创新与应用拓展,已成为作战效能提升的核心支撑。以下从战略应用与未来趋势展开解析:   应用案例   目前,已有多个仿真推演系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润仿真推演系统。这些成功案例为仿真推演系统的推广和应用提供了有力支持。   一、核心战略应用   1. 作战理论创新引擎   依托低成本仿真平台,军事人员可高效验证新型作战概念。   2. 装备全周期优化   覆盖武器
    华盛恒辉l58ll334744 2025-05-14 16:41 79浏览
  • 一、蓝牙射频电路设计的核心价值在智能穿戴、智能家居等物联网设备中,射频性能直接决定通信质量与用户体验。WT2605C等蓝牙语音芯片的射频电路设计,需在紧凑的PCB空间内实现低损耗信号传输与强抗干扰能力。射频走线每0.1dB的损耗优化可使通信距离提升3-5米,而阻抗失配可能导致30%以上的能效损失。二、射频走线设计规范1. 阻抗控制黄金法则50Ω标准阻抗实现:采用4层板时,顶层走线宽度0.3mm(FR4材质,介电常数4.3)双面板需通过SI9000软件计算,典型线宽1.2mm(1.6mm板厚)阻抗
    广州唯创电子 2025-05-13 09:00 27浏览
  • 文/Leon编辑/cc孙聪颖‍2025年1月至今,AI领域最出圈的除了DeepSeek,就是号称首个“通用AI Agent”(智能体)的Manus了,其邀请码一度被炒到8万元。很快,通用Agent就成为互联网大厂、AI独角兽们的新方向,迅速地“卷”了起来。国外市场,Open AI、Claude、微软等迅速推出Agent产品或构建平台,国内企业也在4月迅速跟进。4月,字节跳动、阿里巴巴、百度纷纷入局通用Agent市场,主打复杂的多任务、工作流功能,并对个人用户免费。腾讯则迅速更新腾讯元器的API接
    华尔街科技眼 2025-05-12 22:29 165浏览
  • 一、量子自旋态光学操控1、‌拓扑量子态探测‌磁光克尔效应通过检测拓扑磁结构(如磁斯格明子)的磁光响应,实现对量子材料中非平庸拓扑自旋序的非侵入式表征。例如,二维量子磁体中的“拓扑克尔效应”可通过偏振光旋转角变化揭示斯格明子阵列的动态演化,为拓扑量子比特的稳定性评估提供关键手段。2、‌量子态调控界面‌非厄米磁光耦合系统(如法布里-珀罗腔)通过耗散调控增强克尔灵敏度,可用于奇异点附近的量子自旋态高精度操控,为超导量子比特与光子系统的耦合提供新思路。二、光子量子计算架构优化1、‌光子内存计算器件‌基于
    锦正茂科技 2025-05-13 09:57 42浏览
  •   电磁数据展示系统平台解析   北京华盛恒辉电磁数据展示系统平台是实现电磁数据高效展示、分析与管理的综合性软件体系,以下从核心功能、技术特性、应用场景及发展趋势展开解读:   应用案例   目前,已有多个电磁数据展示系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁数据展示系统。这些成功案例为电磁数据展示系统的推广和应用提供了有力支持。   一、核心功能模块   数据采集与预处理   智能分析处理   集成频谱分析、时频变换等信号处理算法,自动提取时域频域特征;
    华盛恒辉l58ll334744 2025-05-13 10:20 376浏览
  • 在电动出行领域的激烈角逐中,九号公司呈上一份营收净利双涨的成绩单。报告显示,九号公司2024年全年实现总营收141.96亿元,同比增长38.87%;扣非后归母净利润达10.62亿元,同比大幅增长157.24%。更值得关注的是,公司整体毛利率提升3.06个百分点至28.24%,展现出强劲的盈利能力。可当将视角拉远,对标爱玛、雅迪等行业巨擘,便会发现九号的成绩不过是小巫见大巫。财报数据显示,爱玛 2024 年营收 216.06 亿元,净利润 19.8
    用户1742991715177 2025-05-12 19:31 23浏览
  •   舰艇电磁兼容分析与整改系统平台解析   北京华盛恒辉舰艇电磁兼容分析与整改系统平台是保障海军装备作战效能的关键技术,旨在确保舰艇电子设备在复杂电磁环境中协同运行。本文从架构、技术、流程、价值及趋势五个维度展开解析。   应用案例   目前,已有多个舰艇电磁兼容分析与整改系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润舰艇电磁兼容分析与整改系统。这些成功案例为舰艇电磁兼容分析与整改系统的推广和应用提供了有力支持。   一、系统架构:模块化智能体系   电磁环境建模:基
    华盛恒辉l58ll334744 2025-05-14 11:22 77浏览
  • 在当下竞争激烈的 AI 赛道,企业高层的变动往往牵一发而动全身,零一万物近来就深陷这样的动荡漩涡。近日,零一万物联合创始人、技术副总裁戴宗宏离职创业的消息不胫而走。这位在大模型基础设施领域造诣颇深的专家,此前在华为云、阿里达摩院积累了深厚经验,在零一万物时更是带领团队短期内完成了千卡 GPU 集群等关键设施搭建,其离去无疑是重大损失。而这并非个例,自 2024 年下半年以来,李先刚、黄文灏、潘欣、曹大鹏等一众联创和早期核心成员纷纷出走。
    用户1742991715177 2025-05-13 21:24 132浏览
  •   电磁数据管理系统深度解析   北京华盛恒辉电磁数据管理系统作为专业的数据处理平台,旨在提升电磁数据的处理效率、安全性与可靠性。以下从功能架构、核心特性、应用场景及技术实现展开分析:   应用案例   目前,已有多个电磁数据管理系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁数据管理系统。这些成功案例为电磁数据管理系统的推广和应用提供了有力支持。   一、核心功能模块   数据采集与接入:实时接收天线、频谱仪等设备数据,兼容多协议接口,确保数据采集的全面性与实时性
    华盛恒辉l58ll334744 2025-05-13 10:59 285浏览
  •   军事仿真推演系统平台核心解析   北京华盛恒辉军事仿真推演系统平台以计算机仿真技术为基石,在功能、架构、应用及效能上展现显著优势,成为提升军事作战与决策能力的核心工具。   应用案例   目前,已有多个仿真推演系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润仿真推演系统。这些成功案例为仿真推演系统的推广和应用提供了有力支持。   一、全流程功能体系   精准推演控制:覆盖推演启动至结束全流程。   智能想定管理:集成作战信息配置、兵力部署功能。   数据模型整合
    华盛恒辉l58ll334744 2025-05-14 17:11 68浏览
  •   基于 2025 年行业权威性与时效性,以下梳理国内知名软件定制开发企业,涵盖综合型、垂直领域及特色技术服务商:   华盛恒辉科技有限公司:是一家专注于高端软件定制开发服务和高端建设的服务机构,致力于为企业提供全面、系统的开发制作方案。在部队政企开发、建设到运营推广领域拥有丰富经验,在教育,工业,医疗,APP,管理,商城,人工智能,部队软件、工业软件、数字化转型、新能源软件、光伏软件、汽车软件,ERP,系统二次开发,CRM等领域有很多成功案例。   五木恒润科技有限公司:是一家专业的部队信
    华盛恒辉l58ll334744 2025-05-12 16:13 258浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦