【光电智造】关于自动驾驶,尤其是端到端自动驾驶:到底有哪些可能的量产技术路线?

今日光电 2025-03-06 18:01

今日光电


     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!


----追光逐电 光引未来----

0.1 什么是端到端?


首先定义端到端,当然有很多说法。我觉得,起码说相对于分阶段而言,规划不只是根据感知和预测的结果,而是其隐特征。进一步说,在前传和反传,planning可以直接触及输入信息。

0.2 为什么做端到端?


① 优势一:应对场景更多样;

② 优势二:上游出错的结果,不一定影响下游的planning;比如,如果看tesla的有些视频,就是这样,明显感知出错了,不影响planning;

③ 优势三,性能天花板够高,模型设计空间大:比如可以和大模型结合;比如,可以和无监督训练结合。因为,无监督,说明特征无倾向;数据量够大,说明特征泛化好。那分阶段的,一般是有监督训练,当然也可以无监督做个backbone,但还是需要有监督再调;

1、端到端技术路线划分及代表工作


① 直接端到端:就是说,不需要中间感知预测模块,比如mile、driveworld、dreamer-v1、dreamer-v2、sem2、bevplanner、transfuser、driveTransformer;可能需要监督,也可能不需要监督,但是,都没有中间模块了;

② 模块化端到端:以UniAD为代表,FusionAD,VAD,GenAD,都是;

③ 大语言模型路线:drive like a human, driveGPT4, LMDrive, EMMA,Senna;我认为是,这条路线在NLP和多模态的成功,具有启发意义;

④ 基于world model的路线:world models,dreamer-V1\V2, sem2,mile,driveworld, 这些的状态转移,其实就是world model。但是现在所说的world model,比如gaia-1, drivewm, 其实可以和端到端模型结合,比如drivewm做了一个比较粗糙的结合。我认为是趋势,是未来。

⑤ 基于Diffusion的路线:以DiffusionDrive为例;

按照学习范式,又可分为模仿学习和强化学习,这两个并不冲突,可以一起用。

以上,仅为梳理方便而人为划分,仅供参考。角度不同,划分也不同。我认为,每个研究领域都有其自己的生命力,不可硬性分为几个set的。

2、路线分析


2.1 直接端到端 和 模块化端到端 的对比


直接端到端,由传感器信息直接映射到action或者轨迹。由于action或轨迹都太稀疏,训练较为困难,因此,这条路线一般辅以感知的监督训练,如bevseg、occ、车道线、红绿灯等。比如mile、driveworld、dreamer-v1、dreamer-v2、sem2、bevplanner、transfuser、driveTransformer.

图片
直接端到端(以mile举例)

模块化端到端,传感器信息,经过若干感知模块,映射为action或轨迹。不同模块间可传梯度,共同训练。其类似于传统的分阶段自动驾驶,不过是把不同阶段通过transformer中的query机制连接. 以UniAD为代表,FusionAD,VAD,GenAD,都是;

图片
模块化端到端(以UniAD举例)

图片
BevPlanner里面的对比图(上面是模块化端到端,下面是直接端到端)

对比可知,由于现有直接端到端也会辅以感知的监督,直接端到端和模块化端到端的共同点是都需要感知监督。不同的是,直接端到端是并联形式,也就是基于共同的表征feature map,来学习感知和规划;模块化端到端的主线是串联形式,还是依赖于感知结果的。

因此,我认为是直接端到端的天花板更高,而模块化端到端更好训练一些。因为模块化端到端的中间模块,就是通过对应的感知,释加显示的约束,减小求解空间,那这带来的好处就是好训练,不好就是可能把更有效的规划结果给约束掉了。虽然直接端到端也辅以感知,但毕竟是隐式的,也就是感知是为了学习feature map, 规划还是直接基于feature map的。

图片
ICLR2025在投论文 DriveTransformer,感知、预测、规划并联输出

我认为这两条路线,没有本质区别,只是技术发展的一个顺序:模块化更好训,但最终收敛到直接端到端。但达到更好效果,还有不少工作要做。

2.2 基于VLM或LLM的端到端方案


比如drive like a human, driveGPT4, LMDrive, EMMA,Senna。

首先,我觉得VLM或LLM是有用的。

因为LLM或VLM,复杂场景理解、推理能力,这是很强的。另外一方面,在自动驾驶里,对于轨迹解释、VQA等,可能只能用VLM这样的技术来做。

但是,具体怎么用?是直接替代模块化端到端,还是和他们结合?我认为是后者。

VLM擅长场景理解和推理。所以在复杂场景,模块化端到端可能就傻眼了;VLM呢,泛化能力强,还能有个基本的场景理解。所以这些场景,VLM出决策建议,或者粗轨迹给模块化的端到端,或者直接给下游,应该是很有用的。

(1)双流架构的模型:


也就是一个运行快的模型,和一个运行慢的模型,并行运行;至于二者怎么分工和交互,每个工作各有所长,这个细节可以再讨论。相关工作,比如 DriveVLM、LeapAD、AsyncDriver。On the road虽然没做,但在future work中提到了感知部分需要融合传统方案和VLM方案的双流构思。Senna是做端到端规划,其逻辑和思想,与On the road一致。On the road和Senna都认为,VLM适合粗粒度的场景理解和推理,应结合具体任务的模型,实现专家模型泛化能力的增强。我个人非常赞同这个观点。

图片
2024.03, DRIVEVLM: The Convergence of Autonomous Driving and Large Vision-Language Models

图片
2024.05, Continuously Learning, Adapting, and Improving: A Dual-Process Approach to Autonomous Driving (LeapAD)

图片

2024.06, Asynchronous Large Language Model Enhanced Planner for Autonomous Driving,和DriveVLM不同的是:这里的两个系统是做自适应融合,而DriveVLM是做switch.

图片

2023.11, On the Road with GPT-4V(ision): Explorations of Utilizing Visual-Language Model as Autonomous Driving Agent的conclusion部分, 总结的特别好:VLM适合粗粒度的场景理解和推理,可和具体任务模型(专家模型)结合,发挥二者优势。

图片

图片
2024.10,Senna: Bridging Large Vision-Language Models and End-to-End Autonomous Driving


(2)3D信息:


有几篇工作,支撑需要3D信息的观点。至于这个3D,是显式的监督信息带来的,还是2D自监督带来的(如dinov2),是可以讨论的。比如"Is a 3D-Tokenized LLM the Key to Reliable Autonomous Driving? "、”Language-Image Models with 3D Understanding(Cube-LLM)“、”On the Road with GPT-4V(ision): Explorations of Utilizing Visual-Language Model as Autonomous Driving Agent“。前两篇,是正向支撑,证明了加了3D比较好;第三篇是反向支撑,证明没有3D的定位和空间推理能力弱。

图片

图片
2024.05, "Is a 3D-Tokenized LLM the Key to Reliable Autonomous Driving?

图片
2024.05, Language-Image Models with 3D Understanding(Cube-LLM)

(3)总结:


总的来说,这条路线的发展趋势可能是:①和非大语言模型的方案形成双流架构;② 补充3D信息。

此外,On the Road with GPT-4V 和 Image Textualization这两篇论文都提到,现在VLM对环境的感知,属于粒度比较粗的场景理解。

当然,如 Image Textualization这样的方法,正在弥补VLM在细粒度问题上的不足。这条路线值得一直关注。

2.3 基于world model的端到端路线


World Model分为两类:端到端自动驾驶模型中的world model,数据生成中的world model。

world model的定义:

图片
2018, World Models

World Model要具备三个属性:预测、表征、可控。


(1)端到端自动驾驶模型中的world model


用于开车:探讨世界模型的集成如何使自动驾驶汽车能够预测并制定行动策略?

比如早期的world models,dreamr-V1, dream-V2, sem2, Fiery,mile, 近期的DriveWorld,以Mile为代表:

https://wayve.ai/thinking/learning-a-world-model-and-a-driving-policy/

图片

但是这条路线,好像是用到机器人的偏多......用到智驾有一个明显问题:累计误差。

目前,智驾领域的World Model,一般指基于action条件的驾驶场景数据生成

(2)数据生成中的world model


用于数据生成和驾驶行为理解:corner case的数据生成,模型或人类驾驶行为的理解。

以GAIA-1为代表:
https://wayve.ai/thinking/scaling-gaia-1/

图片
2023.09,GAIA-1


(3)二者的统一:Foundation Model


图片
2024.05, DriveWorld, 把Occ预测和action规划合二为一

图片
Mile, 其实也是生成和规划合二为一的

将生成和规划合二为一的,基本都可以作为foundation model。这类工作有个共性,就是生成的对象是有语义信息和几何信息的。按道理,也只有这样才能做规划。比如,Driveworld是生成Occ; Mile是生成BevSeg图。

值得说明,Mile本身不是Foundation model,但其范式非常具备自动驾驶Foundation Model的潜力。Mile是一篇非常好的学术工作,指的不是性能好,而是启发性强。后期很多端到端的工作,都有Mile的影子。DriveWorld里的MSSM和Mile也类似。

(4)总结world model的用处:


第一个是:端到端出planning或action;

第二个是:数据生成,可控数据生成,corner case数据生成;给训练感知或端到端自动驾驶模型用;

第三个是:真实场景的闭环仿真系统,采集数据、评估模型、驾驶行为理解;

第四个是:Foundation Model。也就是基于这个模型,做一系列下游任务。这种范式的工作并不多,代表性的是DriveWorld。个人猜测特斯拉是基于worldmodel,,,因为tesla这么大的算力,我想不是训练模块化端到端,也不是训练VLM,,只有world model匹配如此大算力。仅为个人猜测。

个人认为:虽然这两年是模块化端到端和VLM端到端热闹,过两年可能就是world model了;world model是非常具备潜力的方向,端到端可以看做是world model的子集。

2.4 基于Diffusion的端到端路线


这方面看的不多,以DiffusionDrive举例

Motivation:扩散模型已被证明是机器人领域一种强大的生成决策策略;而扩散本身是连续空间的问题,和轨迹规划更契合,但Diffusion用于规划,不能实时;

图片

1、直接把Transfuser里的planning decoder换成diffusion,有两个问题:模式坍塌、时间太长;
2、因此提出,Truncated Diffusion:
① 添加anchor的概念,基于anchor做扩散;
② 前向扩散,只添加小部分高斯噪声,不要到全部是高斯噪声;
③ 其他细节:前向diffusion steps=50,反向denoising steps=2。

图片

个人认为有两个地方疑惑:

  1. 消融实验,无从验证diffusion真正起到的作用;
  2. 为什么要用diffusion做规划?没有论述。个人认为,轨迹规划,本身可以看出是分布的问题,用Diffusion合情合理;但总感觉,杀鸡用牛刀,diffusion更适合分布复杂的情况,如图像生成、语音生成,而对于轨迹规划,可能不能凸显出diffusion的优势。
补充:基于Diffusion的方法,和前面所说的直接端到端、模块化端到端,甚至基于world model的端到端,不冲突,是结合使用的。简单说,就是把一步回归改为多步回归。


3、总结

图片

整体来说,这几条路线,统一大于对立
来源:新机器视觉


申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。



----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566



评论 (0)
  •   电磁数据展示系统平台解析   北京华盛恒辉电磁数据展示系统平台是实现电磁数据高效展示、分析与管理的综合性软件体系,以下从核心功能、技术特性、应用场景及发展趋势展开解读:   应用案例   目前,已有多个电磁数据展示系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁数据展示系统。这些成功案例为电磁数据展示系统的推广和应用提供了有力支持。   一、核心功能模块   数据采集与预处理   智能分析处理   集成频谱分析、时频变换等信号处理算法,自动提取时域频域特征;
    华盛恒辉l58ll334744 2025-05-13 10:20 277浏览
  • ‌磁光克尔效应(Magneto-Optic Kerr Effect, MOKE)‌ 是指当线偏振光入射到磁性材料表面并反射后,其偏振状态(偏振面旋转角度和椭偏率)因材料的磁化强度或方向发生改变的现象。具体表现为:1、‌偏振面旋转‌:反射光的偏振方向相对于入射光发生偏转(克尔旋转角 θK)。2、‌椭偏率变化‌:反射光由线偏振变为椭圆偏振(克尔椭偏率 εK)。这一效应直接关联材料的磁化状态,是表征磁性材料(如铁磁体、反铁磁体)磁学性质的重要非接触式光学探测手段,广泛用于
    锦正茂科技 2025-05-12 11:02 282浏览
  •   基于 2025 年行业权威性与时效性,以下梳理国内知名软件定制开发企业,涵盖综合型、垂直领域及特色技术服务商:   华盛恒辉科技有限公司:是一家专注于高端软件定制开发服务和高端建设的服务机构,致力于为企业提供全面、系统的开发制作方案。在部队政企开发、建设到运营推广领域拥有丰富经验,在教育,工业,医疗,APP,管理,商城,人工智能,部队软件、工业软件、数字化转型、新能源软件、光伏软件、汽车软件,ERP,系统二次开发,CRM等领域有很多成功案例。   五木恒润科技有限公司:是一家专业的部队信
    华盛恒辉l58ll334744 2025-05-12 16:13 236浏览
  • 在印度与巴基斯坦的军事对峙情境下,歼10C的出色表现如同一颗投入平静湖面的巨石,激起层层涟漪,深刻印证了“质量大于数量”这一铁律。军事领域,技术优势就是决定胜负的关键钥匙。歼10C凭借先进的航电系统、强大的武器挂载能力以及卓越的机动性能,在战场上大放异彩。它能够精准捕捉目标,迅速发动攻击,以一敌多却毫不逊色。与之形成鲜明对比的是,单纯依靠数量堆砌的军事力量,在面对先进技术装备时,往往显得力不从心。这一现象绝非局限于军事范畴,在当今社会的各个领域,“质量大于数量”都已成为不可逆转的趋势。在科技行业
    curton 2025-05-11 19:09 233浏览
  • 文/Leon编辑/cc孙聪颖‍2025年1月至今,AI领域最出圈的除了DeepSeek,就是号称首个“通用AI Agent”(智能体)的Manus了,其邀请码一度被炒到8万元。很快,通用Agent就成为互联网大厂、AI独角兽们的新方向,迅速地“卷”了起来。国外市场,Open AI、Claude、微软等迅速推出Agent产品或构建平台,国内企业也在4月迅速跟进。4月,字节跳动、阿里巴巴、百度纷纷入局通用Agent市场,主打复杂的多任务、工作流功能,并对个人用户免费。腾讯则迅速更新腾讯元器的API接
    华尔街科技眼 2025-05-12 22:29 104浏览
  • 感谢面包板论坛组织的本次测评活动,本次测评的对象是STM32WL Nucleo-64板 (NUCLEO-WL55JC) ,该测试板专为LoRa™应用原型构建,基于STM32WL系列sub-GHz无线微控制器。其性能、功耗及特性组合经过精心挑选,支持通过Arduino® Uno V3连接,并利用ST morpho接头扩展STM32WL Nucleo功能,便于访问多种专用屏蔽。STM32WL Nucleo-64板集成STLINK-V3E调试器与编程器,无需额外探测器。该板配备全面的STM
    无言的朝圣 2025-05-13 09:47 100浏览
  • 在 AI 浪潮席卷下,厨电行业正经历着深刻变革。AWE 2025期间,万得厨对外首次发布了wan AiOS 1.0组织体超智能系统——通过AI技术能够帮助全球家庭实现从健康检测、膳食推荐,到食材即时配送,再到一步烹饪、营养总结的个性化健康膳食管理。这一创新之举并非偶然的个案,而是整个厨电行业大步迈向智能化、数字化转型浪潮的一个关键注脚,折射出全行业对 AI 赋能的热切渴求。前有标兵后有追兵,万得厨面临着高昂的研发成本与技术迭代压力,稍有懈怠便可能被后来者赶
    用户1742991715177 2025-05-11 22:44 175浏览
  • 在全球供应链紧张和国产替代需求推动下,国产存储芯片产业快速发展,形成设计到封测一体化的完整生态。北京君正、兆易创新、紫光国芯、东芯股份、普冉股份和佰维存储等六大上市公司在NOR/NAND Flash、DRAM、嵌入式存储等领域布局各具特色,推动国产替代提速。贞光科技代理的品牌紫光国芯,专注DRAM技术,覆盖嵌入式存储与模组解决方案,为多领域客户提供高可靠性产品。随着AI、5G等新兴应用兴起,国产存储厂商有望迎来新一轮增长。存储芯片分类与应用易失性与非易失性存储芯片易失性存储芯片(Volatile
    贞光科技 2025-05-12 16:05 159浏览
  •   定制软件开发公司推荐清单   在企业数字化转型加速的2025年,定制软件开发需求愈发多元复杂。不同行业、技术偏好与服务模式的企业,对开发公司的要求大相径庭。以下从技术赛道、服务模式及行业场景出发,为您提供适配的定制软件开发公司推荐及选择建议。   华盛恒辉科技有限公司:是一家专注于高端软件定制开发服务和高端建设的服务机构,致力于为企业提供全面、系统的开发制作方案。在部队政企开发、建设到运营推广领域拥有丰富经验,在教育,工业,医疗,APP,管理,商城,人工智能,部队软件、工业软件、数字化转
    华盛恒辉l58ll334744 2025-05-12 15:55 308浏览
  •   电磁数据管理系统深度解析   北京华盛恒辉电磁数据管理系统作为专业的数据处理平台,旨在提升电磁数据的处理效率、安全性与可靠性。以下从功能架构、核心特性、应用场景及技术实现展开分析:   应用案例   目前,已有多个电磁数据管理系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁数据管理系统。这些成功案例为电磁数据管理系统的推广和应用提供了有力支持。   一、核心功能模块   数据采集与接入:实时接收天线、频谱仪等设备数据,兼容多协议接口,确保数据采集的全面性与实时性
    华盛恒辉l58ll334744 2025-05-13 10:59 212浏览
  • 【拆解】+CamFi卡菲单反无线传输器拆解 对于单反爱好者,想要通过远程控制自拍怎么办呢。一个远程连接,远程控制相机拍摄的工具再合适不过了。今天给大伙介绍的是CamFi卡菲单反无线传输器。 CamFi 是专为数码单反相机打造的无线传输控制器,自带的 WiFi 功能(无需手机流量),不但可通过手机、平板、电脑等设备远程连接操作单反相机进行拍摄,而且还可实时传输相机拍摄的照片到 iPad 和电视等大屏设备进行查看和分享。 CamFi 支持大部分佳能和尼康单反相机,内置可充电锂离子电池,无需相机供电。
    zhusx123 2025-05-11 14:14 343浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦