【光电智造】摆脱缺陷样本少的烦恼!基于正样本的布匹表面缺陷检测

今日光电 2025-02-28 20:06
今日光电

     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!


----追光逐电 光引未来----


一般来说,我们做工业场景的缺陷检测识别时,首先需要利用现有的缺陷数据集训练模型,之后利用训练好的模型做识别。但随着制作工业的提升,缺陷的数量越来越少,难以满足对深度学习对大样本数量的要求。本文提出了一种仅基于正样本训练的缺陷检测方法,无需缺陷数据和手动标注,也可以取得较好的缺陷检测效果。


表面缺陷检测在工业生产中起着非常重要的作用,基于机器视觉的表面缺陷检测可以极大的提升工业生产的效率。随着近年来深度学习在计算机视觉领域的发展,卷积神经网络在诸多图像任务上都取得了显著的效果,然而这些方法往往是需要大量标注数据的有监督学习。在实际的工业场景中,缺陷样本往往是难以收集的,而且标注的成本也十分巨大。针对上述有监督学习在实际应用中存在的问题,本文提出了一种仅基于正样本训练的缺陷检测方法。训练过程中只需要提供足够的正样本,无需缺陷数据和手动标注,也可以取得较好的缺陷检测效果,具有较高的应用价值。

01

介绍


机器视觉表面缺陷检测在工业生产中扮演着重要的角色。传统都是直接人工肉眼鉴别是否存在表面缺陷,不仅耗费人力且不能准确识别缺陷。
机器视觉可以替代人眼进行检测,但在实际应用中仍面临很多挑战,尤其是近几年的传统图像算法解决方案基于经验手工设计,算法存在精度较低且不够鲁棒的问题,特别是在诸如打光、形变、失真和遮挡等复杂的场景中。现今深度学习在特征提取方面有着亮眼的表现,在诸多有监督的任务上都取得了优质的表现,例如分类、目标检测和图像分割。

同时,近年来也涌现了不少用卷积神经网络来进行缺陷检测的方案,其中最常见的是直接利用目标检测网络如Faster RCNN或者SSD对缺陷进行定位和分类。也有先用目标检测进行粗定位,然后用FCN进行语义分割得到精确定位的方法,这种方法可以得到缺陷的精准轮廓,但是这些方法都属于有监督的学习,在实际的工业应用中存在以下问题:

缺少缺陷样本:在实际应用中,用于训练的缺陷样本往往是非常稀少且难以获取的。因此在训练过程中正负样本是非常不均衡的,这极大的限制了模型的性能,甚至导致模型完全不可用。在缺陷外观多变的场景下,有监督学习的方法往往无法满足正常的生产需求。

人工标注成本高昂:实际的工业缺陷检测场景中,通常存在许多不同种类的缺陷,检测的标准和质量指标往往也不同。这就需要人为标注大量的训练数据来满足特定需求,这需要付出大量的人力资源。

02

相关工作


2.1基于正样本的修复模型
本文的灵感来自于一系列基于对抗生成网络GAN的检测和修复模型。GAN的基本框架如图1,主要包括生成器G和判别器D两个部分。生成器G接收从一个高斯分布中随机采样的信号来生成图片,判别器D接收真实图片和生成器生成的虚假图片并区分它们。生成器和判别器在训练时不断对抗从而改善生成图片的质量。

图片

之前有学者使用GAN来进行图像修复。首先使用正常的无缺陷图片来训练GAN,然后再修复已知位置的缺陷时,我们优化生成器的输入z,获得最优的z来让重建图片y和缺陷图片的正常部分最大程度的接近。 另外一个基于图像修复的缺陷检测算法的做法是用中间层的重建误差来重建图像而无需知道缺陷的位置,通过重建图片和原始图片的差异来定位缺陷。

2.2 自编码器

Pix2pix 用自编码器和GAN联合解决图像迁移任务。它可以生产清晰而真实的图像。为了获得质量更佳的细节和边缘,pix2pix使用了类似unet的跨层链接。该结构并不利于去除整个缺陷,因此我们的模型没有使用这个结构。一般自编码器用于图像风格迁移等任务,如给黑白图像上色或者将照片转化为简笔画等。我们用自编码器完成图像重建的任务。

在上述工作的基础上本文完成了以下工作:
(1) 使用自编码器重建图像。我们通过加入GANloss来让生成的图像更加真实。
(2) 在训练时人工加入缺陷,不依赖大量的真实缺陷数据,也不用人工标注。
(3) 使用LBP算法来对比重建图片和原始图片,从而定位缺陷。

03

方案


3.1基本框架图
本文提出的模型的基本框架如图2

图片
图2. 网络框架

C(x~|x)是设计的一个人工制造缺陷的模块,在训练阶段,通过该模块将训练集x人为的加上缺陷得到缺陷图片x~。EN为编码器,它将输入的缺陷图片x~映射为一个潜在变量z ,DE为解码器,它将潜在变量z重新建模成图片y。EN和DE共同组成一个自编码器,作为GAN中的生成器,其任务便是让输出的图片y不断接近正常的图片x。判别器D用来判断其输入是来自于真实的训练集还是生成器的输出图片。通过对抗训练,生成器G便拥有了修复缺陷的能力。

在测试阶段,将之前训练好的自编码器G作为修复模块,将测试图片x输入到自编码器G中,获得修复后的图片y。修复图片y和原图作为输入一起用LBP算法来提取特征并对比,从而定位缺陷。

3.2 损失函数

缺陷样本在经过自编码器G重建后应该与原始的正常图片相同,本文参考pix2pix,用L1距离来表征它们的相似程度。

图片

然而在实验中发现,如果仅仅使用L1 loss来作为目标函数,获取的图像边缘会变得模糊而且会丢失细节。本文通过加入判别器D,用GAN loss来改善图像质量,提升重建效果。

图片

因此最终的优化目标如下:

图片

3.3 网络结构细节

本文的网络结构参考了DCGAN。在生成器和判别器中增加batchnorm层。在判别器中使用LeakyRelu激活函数,在生成器中使用Relu激活函数。

在本文的模型中,自编码器只需要将图片修复成最接近的样本图片,并不在乎缺陷的具体形式。在实际训练过程中,人为的随机生成不同位置、大小、灰度和数量的缺陷块到图片中,如图3。

图片
图3. 人工缺陷示意图

数据增强方面,本文在0.5到2之间进行尺度变换,并随机加入-180和180°的旋转以及随机高斯模糊。

3.4定位缺陷

由于重建后的图片和原始图片在细节上存在一些误差,我们不能直接将原始图片和修复图片做差分来得到缺陷位置。本文使用LBP算法来进行特征提取,并匹配每个像素。具体流程如图4。

图片图4. 定位缺陷的过程
将原始图像x和修复图像y输入到LBP模块,提取出特征图x+和y+。对于x+的所有像素点,在y+中对应位置搜索最匹配的特征点,从而对齐了特征。最后逐个对比匹配点之间的特征值,通过设置一个阈值来筛选,便可以得到缺陷的位置。

04

实验效果


文在DAGM表面纹理数据集和纺织物数据集上做了实验来检验性能。并与FCN算法进行比较。使用平均精度来作为衡量标准。

4.1表面纹理缺陷


纹理表面有着较好的一致性,所以在训练集中有足够的缺陷样本来学习。

表1. 表面纹理数据集的测试信息
训练集
本文:400张无缺陷图FCN: 85张带缺陷图+400张无缺陷图
测试集
85张带缺陷图
图像尺寸
512*512

表2. 纺织图片数据集的测试结果
模型
平均精度
耗时
FCN(8s)
81.6833
31.2ms
本文
94.4253%
22.3ms

图片
图5. (A) 初始输入图片 (B) 重建图片 (C) 本文的结果 (D) FCN的结果 (E) 真实标签

4.2 纺织物图片

由于真实场景中的纺织物的不同样式,训练集中的缺陷样本很少。在实验里共有五种缺陷,每种缺陷有五张图片,还有25张正样本。对于语义分割模型,每种缺陷图像中3张作为训练集,2张为测试集。

表3. 纺织图片数据集的测试信息
模型
平均精度
耗时
FCN(8s)
98.3547%
80.3ms
本文
98.5323%
52.1ms

表4. 纺织图片数据集的测试结果
模型
平均精度
耗时
FCN(8s)
81.6833
31.2ms
本文
94.4253%
22.3ms

图片
图6. (A) 初始输入图片 (B) 重建图片 (C) 本文的结果 (D) FCN的结果 (E) 真实标签

实验表明,在规则的背景下,当标记缺陷样本足够时,本文的精度接近有监督的语义分割模型,当缺陷样本不足时,本文的模型要强于语义分割。而且本文提出的模型速度更快,可实时运行。

05

结论


本文提出了一种结合自编码器和GAN的缺陷检测算法,无需负样本和人工标注。在训练时通过数据增强和人为加入缺陷,该模型可以自动修复规则纹理图像的缺陷,并定位缺陷的具体位置。在训练集中标注缺陷较少乃至没有的情况时,本文的模型可以取得比有监督模型更好的结果。


来源:机器视觉沙龙


申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。



----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566



评论 (0)
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 235浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 128浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 251浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 203浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 228浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 187浏览
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 254浏览
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 113浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 159浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 256浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 238浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 189浏览
  • REACH和RoHS欧盟两项重要的环保法规有什么区别?适用范围有哪些?如何办理?REACH和RoHS是欧盟两项重要的环保法规,主要区别如下:一、核心定义与目标RoHS全称为《关于限制在电子电器设备中使用某些有害成分的指令》,旨在限制电子电器产品中的铅(Pb)、汞(Hg)、镉(Cd)、六价铬(Cr6+)、多溴联苯(PBBs)和多溴二苯醚(PBDEs)共6种物质,通过限制特定材料使用保障健康和环境安全REACH全称为《化学品的注册、评估、授权和限制》,覆盖欧盟市场所有化学品(食品和药品除外),通过登
    张工13144450251 2025-03-31 21:18 165浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦