【stm32f407】NVIC

原创 专注于无线通信的蓬勃 2017-06-05 16:33

NVIC称之为嵌套向量中断控制器:Nested Vectored Interrupt Controller (NVIC)“。

CM4内核支持256个中断,其中包含了16个内核中断和240个外部中断,并且具有256级的可编程中断设置。但STM32F4并没有使用CM4内核的全部东西,而是只用了它的一部分

STM32F40xx/STM32F41xx总共有92个中断,STM32F42xx/STM32F43xx则总共有96个中断,以下仅以STM32F40xx/41xx为例讲解。

STM32F40xx/STM32F41xx92个中断里面,包括10个内核中断和82个可屏蔽中断,具有16级可编程的中断优先级,而我们常用的就是这82个可屏蔽中断。在MDK内,与NVIC相关的寄存器,MDK为其定义了如下的结构体:

typedefstruct
{
__IOuint32_t ISER[8];   /*!< Interrupt SetEnable Register */
uint32_tRESERVED0[24];
__IOuint32_t ICER[8];      /*!< InterruptClear Enable Register */
uint32_tRSERVED1[24];
__IOuint32_t ISPR[8];      /*!< InterruptSet Pending Register */
uint32_tRESERVED2[24];
__IOuint32_t ICPR[8];      /*!< InterruptClear Pending Register */
uint32_tRESERVED3[24];
__IOuint32_t IABR[8];        /*!<Interrupt Active bit Register */
uint32_tRESERVED4[56];
__IOuint8_t IP[240];    /*!< InterruptPriority Register, 8Bit wide      */
uint32_tRESERVED5[644];
__Ouint32_t STIR;      /*!< SoftwareTrigger Interrupt Register */
}NVIC_Type;

STM32F4的中断在这些寄存器的控制下有序的执行的。只有了解这些中断寄存器,才能方便的使用STM32F4的中断。下面重点介绍这几个寄存器:

ISER[8]ISER全称是:Interrupt Set-Enable Registers,这是一个中断使能寄存器组。上面说了CM4内核支持256个中断,这里用832位寄存器来控制,每个位控制一个中断。但是STM32F4的可屏蔽中断最多只有82个,所以对我们来说,有用的就是三个(ISER[0~2]),总共可以表示96个中断。而STM32F4只用了其中的前82个。ISER[0]bit0~31分别对应中断0~31ISER[1]bit0~32对应中断32~63ISER[2]bit0~17对应中断64~81;这样总共82个中断就分别对应上了。你要使能某个中断,必须设置相应的ISER 位为1,使该中断被使能(这里仅仅是使能,还要配合中断分组、屏蔽、IO 口映射等设置才算是一个完整的中断设置)

ICER[8]:全称是:Interrupt Clear-Enable Registers,是一个中断除能寄存器组。该寄存器组与ISER的作用恰好相反,是用来清除某个中断的使能的。其对应位的功能,也和ICER一样。这里要专门设置一个ICER来清除中断位,而不是向ISER0来清除,是因为NVIC的这些寄存器都是写1有效的,写0是无效的。

ISPR[8]:全称是:Interrupt Set-Pending Registers,是一个中断挂起控制寄存器组。每个位对应的中断和ISER是一样的。通过置1,可以将正在进行的中断挂起,而执行同级或更高级别的中断。写0是无效的。

ICPR[8]:全称是:Interrupt Clear-Pending Registers,是一个中断解挂控制寄存器组。其作用与ISPR相反,对应位也和ISER是一样的。通过设置1,可以将挂起的中断接挂。写0无效。

IABR[8]:全称是:Interrupt Active Bit Registers,是一个中断激活标志位寄存器组。对应位所代表的中断和ISER一样,如果为1,则表示该位所对应的中断正在被执行。这是一个只读寄存器,通过它可以知道当前在执行的中断是哪一个。在中断执行完了由硬件自动清零。

IP[240]:全称是:Interrupt Priority Registers,是一个中断优先级控制的寄存器组。这个寄存器组相当重要!STM32F4的中断分组与这个寄存器组密切相关。IP 寄存器组由2408bit的寄存器组成,每个可屏蔽中断占用8bit,这样总共可以表示240个可屏蔽中断。而STM32F4只用到了其中的82个。IP[81]~IP[0]分别对应中断81~0。而每个可屏蔽中断占用的8bit并没有全部使用,而是只用了高4位。这4位,又分为抢占优先级和响应优先级。抢占优先级在前,响应优先级在后。而这两个优先级各占几个位又要根据SCB->AIRCR中的中断分组设置来决定。

这里简单介绍一下STM32F4的中断分组:STM32F4将中断分为5个组,组0~4。该分组的设置是由SCB->AIRCR寄存器的bit10~8来定义的。如图所示:

通过这个表,我们就可以清楚的看到组0~4对应的配置关系,例如组设置为3,那么此时所有的82个中断,每个中断的中断优先寄存器的高四位中的最高3位是抢占优先级,低1位是响应优先级。每个中断,你可以设置抢占优先级为0~7,响应优先级为10。抢占优先级的级别高于响应优先级。而数值越小所代表的优先级就越高。

这里需要注意两点:

第一,如果两个中断的抢占优先级和响应优先级都是一样的话,则看哪个中断先发生就先执行;

第二,高优先级的抢占优先级是可以打断正在进行的低抢占优先级中断的。而抢占优先级相同的中断,高优先级的响应优先级不可以打断低响应优先级的中断。

结合实例说明一下:假定设置中断优先级组为2,然后设置中断3(RTC_WKUP中断)的抢占优先级为2,响应优先级为1。中断6(外部中断0)的抢占优先级为3,响应优先级为0。中断7(外部中断1)的抢占优先级为2,响应优先级为0。那么这3个中断的优先级顺序为:中断7>中断3>中断6

上面例子中的中断3和中断7都可以打断中断6的中断。而中断7和中断3却不可以相互打断!

通过以上介绍,我们熟悉了STM32F4中断设置的大致过程。

在来个例子:

抢占优先级和响应优先级STM32 的中断向量具有两个属性,一个为抢占属性,另一个为响应属性,其属性编号越小,表明它的优先级别越高。
抢占,是指打断其它中断的属性,即因为具有这个属性,会出现嵌套中断
(
在执行中断服务函数 A 的过程中被中断 B 打断,执行完中断服务函数 B 再继续
执行中断服务函数 A),抢占属性由 NVIC_IRQChannelPreemptionPriority 的参
数配置。而响应属性则应用在抢占属性相同的情况下,当两个中断向量的抢占优先
级相同时,如果两个中断同时到达,则先处理响应优先级高的中断,响应属性由NVIC_IRQChannelSubPriority 的参数配置。例如,现在有三个中断向量:
中断向量  抢占优先级  响应优先级
A  0  0
B  1  0
C  1  1
若内核正在执行 C 的中断服务函数,则它能被抢占优先级更高的中断 A
断,由于 B C 的抢占优先级相同,所以 C 不能被 B 打断。但如果 B C 中断
是同时到达的,内核就会首先响应响应优先级别更高的 B 中断。

接下来我们介绍如何使用库函数实现以上中断分组设置以及中断优先级管理,使得我们以后的中断设置简单化。NVIC中断管理函数主要在misc.c文件里面。

首先要讲解的是中断优先级分组函数NVIC_PriorityGroupConfig,其函数申明如下

voidNVIC_PriorityGroupConfig(uint32_t NVIC_PriorityGroup);

这个函数的作用是对中断的优先级进行分组,这个函数在系统中只能被调用一次,一旦分组确定就最好不要更改。这个函数我们可以找到其实现:

voidNVIC_PriorityGroupConfig(uint32_t NVIC_PriorityGroup)

{

assert_param(IS_NVIC_PRIORITY_GROUP(NVIC_PriorityGroup));

SCB->AIRCR= AIRCR_VECTKEY_MASK | NVIC_PriorityGroup;

}

从函数体可以看出,这个函数唯一目的就是通过设置SCB->AIRCR寄存器来设置中断优先级分组,这在前面寄存器讲解的过程中已经讲到。而其入口参数通过双击选中函数体里面的“IS_NVIC_PRIORITY_GROUP”然后右键“Go to defitionof …”可以查看到为

这也是我们上面提到的,分组范围为0-4。比如我们设置整个系统的中断优先级分组值为2,那么方法是:

NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);

这样就确定了一共为“2位抢占优先级,2位响应优先级

设置好了系统中断分组,那么对于每个中断我们又怎么确定他的抢占优先级和响应优先级呢?下面我们讲解一个重要的函数为中断初始化函数NVIC_Init,其函数申明为:

voidNVIC_Init(NVIC_InitTypeDef* NVIC_InitStruct)

其中NVIC_InitTypeDef是一个结构体,我们可以看看结构体的成员变量:

typedefstruct
{
uint8_tNVIC_IRQChannel; 
uint8_tNVIC_IRQChannelPreemptionPriority;
uint8_tNVIC_IRQChannelSubPriority; 
FunctionalStateNVIC_IRQChannelCmd; 
} NVIC_InitTypeDef;

NVIC_InitTypeDef结构体中间有四个成员变量,接下来我们一一来看看这些成员变量的含义。

NVIC_IRQChannel:定义初始化的是哪个中断,这个我们可以在stm32f4xx.h 中找到每个中断对应的名字。例如USART1_IRQnNVIC_IRQChannelPreemptionPriority:定义这个中断的抢占优先级别。NVIC_IRQChannelSubPriority:定义这个中断的子优先级别,也叫响应优先级。NVIC_IRQChannelCmd:该中断通道是否使能。

比如我们要使能串口1的中断,同时设置抢占优先级为1,响 应优先级位2,初始化的方法是:

NVIC_InitTypeDef  NVIC_InitStructure;;
NVIC_InitStructure.NVIC_IRQChannel= USART1_IRQn;//串口1中断
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=1;// 抢占优先级为1
NVIC_InitStructure.NVIC_IRQChannelSubPriority= 2;// 响应优先级位2
NVIC_InitStructure.NVIC_IRQChannelCmd= ENABLE;      //IRQ通道使能
NVIC_Init(&NVIC_InitStructure);  //根据上面指定的参数初始化NVIC寄存器

这里我们讲解了中断分组的概念以及设置单个中断优先级的方法。对于每个中断,还有一些类似清除中断,查看中断状态的操作,这在后面我们讲解每个中断的时候会详细讲解怎么使用。

最后我们总结一下中断优先级设置的步骤:

1.    系统运行开始的时候设置中断分组。确定组号,也就是确定抢占优先级和响应优先级的分配位数。调用函数为NVIC_PriorityGroupConfig();

2.    设置所用到的中断的中断优先级别。对每个中断调用函数为NVIC_Init();

 

专注于无线通信的蓬勃 朝气蓬勃——不积跬步 无以至千里, 不积小流 无以成江海
评论
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 679浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 150浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 337浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 684浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 165浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 141浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 188浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 199浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 65浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 126浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 87浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦