LLC谐振电路应用于车载充电机OBC,本文就LLC的关键问题做了解答

电力电子技术与新能源 2025-02-26 22:17

欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 1003941203


高可靠新能源行业顶尖自媒体


在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注微信公众号:电力电子技术与新能源(Micro_Grid),论坛:www.21micro-grid.com,建立的初衷就是为了技术交流,作为一个与产品打交道的技术人员,市场产品信息和行业技术动态也是必不可少的,希望大家不忘初心,怀有一颗敬畏之心,做出更好的产品!

电力电子技术与新能源论坛

www.21micro-grid.com


本文就LLC的一些关键问题做了解答,如LLC为何要工作在感性区域,以及LLC分体谐振电容有什么优缺点等。

一、LLC为何要工作在感性区域?

任何一个网络都是呈现感性、容性和纯阻性三种状态,对于LLC网络而言同样存在以上三种状态,根据输入及负载变化由容性阻性感性而变化,如下图所示为LLC等效模型。

工作在纯阻性区域是我们理想的工作状态,因为阻性网络的品质因素最高,网络特性最好;

工作在容性区域的话电流超前于电压,对于前级开关管而言容易实现ZCS关断,这个区域比较适合IGBT;

工作在感性区域的话电压超前于电流,对于前级开关管而言容易实现ZVS开通,这个区域比较适合MOSFET;

对于中小功率电源而言普遍使用MOSFET,因此常规LLC拓扑开关电源选择工作于感性区域。

二、ZVS1和ZVS2各有什么优缺点,如何选择?

LLC网络存在两个电感一个电容,也就是说存在两个谐振点,一个是Lr和Cr的谐振点,另一个谐振点由Lm,Cr以及负载条件决定。负载加重,谐振频率将会升高,如下图。

在整个感性区域都能实现ZVS,在ZVS1区不能实现次级整流管的ZCS关断,存在反向恢复问题;在ZVS2区可以实现次级整流管的ZCS关断,不存在反向恢复问题。

因此对于选择网络工作于ZVS1还是ZVS2区域有不同看法。

从理论上来讲工作于ZVS2区域效率高于ZVS1区,越接近于谐振点的工作点效率越高,同时兼顾短路性能等问题,建议工作点选择略大于谐振点(基于LLC短路问题靠增加频率来提高网络的等效阻抗来保护这一特性)。

三、LLC初级MOSFET是ZVS关断还是ZCS关断?

LLC工作在感性区域,因此开通是ZVS,但关断既不是ZVS也不是ZCS,是硬开关关断,损耗不可避免,但对于MOSFET而言,开通损耗相对关断损耗大很多,对于LLC的ZVS而言是指开通时刻的ZVS,因此可以大大降低开关损耗。

四、为何计算LLC匝比的时候要用母线电压的一半?

我们计算反激或者正激电路时都是使用母线电压来设计匝比,但是LLC为何只使用母线电压的一半来计算匝比呢?

在LLC上管开通的半个周期内母线给LLC网络输入能量,这个能量一部分直接传递给输出,另一部分储存在网络内,在下管开通的半个周期内,依靠谐振电容和谐振电感输出能量。

所以只有上半个周期母线给网络输入了能量,即时间的利用率是一半,等效于输入电压的利用率为1/2。

五、LLC分体谐振电容有什么优缺点?

LLC半桥谐振电路中,根据这个谐振电容的不同联结方式,典型LLC谐振电路有两种连接方式,不同之处在于LLC谐振腔的连接。

左图采用单谐振电容Cr,其输入电流纹波和电流有效值较高,但布线简单,成本相对较低;

右图采用分体谐振电容C1、C2,其输入电流纹波和电流有效值较低,C1和C2上分别只流过一半的有效值电流,且电容量仅为左图单谐振电容的一半。

比较而言,分体谐振优势不大。

六、LLC独立谐振电感和集成谐振电感各有什么优缺点?

先说说集成谐振电感的方式,这种方式是利用变压器初级漏感来做谐振电感的,优点是体积小、成本低,缺点是漏感很难控制,和变压器绕法,初级匝数存在着紧密的联系,因此谐振参数不好调节,性能难做到最优。

独立谐振电感的方式是通过外置一个谐振电感,同时控制主变压器的漏感在很小的范围内,这样做的优点是容易调节谐振电感与励磁电感低比例,优化起来更灵活,容易调节到一个理想状态,缺点是增加了一个谐振电感增加体积,布线难度和成本增加。

因此一般功率较小的电源都更愿意使用集成谐振电感,成本相对较低,性能要求不是很苛刻;功率大的更愿意使用外置谐振电感,性能容易优化。

七、LLC的开关管能否直接并联?

弥勒电容Cgd对于MOSFET而言是寄生于栅极和漏极之间的电容,对于硬开关电路而言,驱动电流对Cgs和Cgd充电,并且开始开通,而在开通过程中,Vds电压下降,所以Cgd开始放电,故此时需较大的驱动电流要对Cgd充电,这会导致驱动电压波形出现一个短暂的平台,所谓的米勒平台。

关断的时候,DS电压急剧上升,DG电容会流过电流对GS电容充电,引起二次导通。

要消除开通时刻的弥勒效应,在开关管即将开通的时刻DS电压为零,即ZVS。

对于LLC而言,开关管是ZVS开通的,因此对于功率稍大的可以直接并联开关管,不存在弥勒效应或者说将弥勒效应降到最低。

八、LLC的谐振电容和输出功率有什么关系?

这里使用一个公式说明吧,很显然,功率越大需要的谐振电容容量越大。

九、LLC是否适合做恒流输出?

PWM的控制器输出电压可调节范围可以做到很宽,只要供电正常,IC就能做到输出电压范围很宽的电源,这对于做恒流款电源而言具有很大优势;

LLC是PFM控制方式的,只能通过更改频率实现输出电压的变化,由增益曲线图可以知道增益变化范围相对很小,要实现宽电压范围的输出特性不好实现,输出电压越低,工作频率越高,从而开关损耗、磁芯损耗都会加剧。

因此到了一定程度下只能通过限制IC的最高工作频率而通过跳周期方式来降低增益,这样就增加了环路调节的难度,跳周期纹波不好控制,性能也不是最优,因此LLC不适合太宽范围的恒流输出。

十、满足ZVS的两个必要条件是什么?

ZVS前提就是电压超前于电流,所以要满足LLC整个负载范围内都处于感性区域,这是最基本的一个条件,还有一个条件往往被忽视。

要实现开关管的ZVS,励磁电感峰值电流im必须在死区时间内让即将开通开关管的结电容放电,直至电量放完,电压降到零,而已关断的开关管则同时将其结电容充电到输入电压。

因此,两个功率开关管要实现ZVS,应满足如下的励磁电感峰值电流Ipk与死区时间的关系。

其中,Vin为输入总线电压,Cj为MOSFET 的结电容(此处忽略电路布局的杂散电容),tdead为死区时间。

当电路工作于谐振频率,谐振网络电流为如图所示的正弦波,其中im为励磁电流。在每半个开关周期结束时,励磁电流达到最大值,与谐振网络电流ir相等。

励磁电感峰值电流可以得到:

其中Vo 为输出电压,T为开关周期,Lm为励磁电感,到Lm的值应满足:

由不等式得到的最大的励磁电感Lm可以保证开关管的ZVS,然而,小的Lm将增大MOSFET的开关损耗。

由于这个被动Lm负载,可以保证在任何负载情况下都能工作在零电压开关状态下。

文章首尾冠名广告正式招商,功率器件:IGBT,MOS,SiC,GaN,磁性器件,电源芯片,DSP,MCU,新能源厂家都可合作,有意者加微信号1768359031详谈。

说明:本文来源网络;文中观点仅供分享交流,不代表本公众号立场,转载请注明出处,如涉及版权等问题,请您告知,我们将及时处理。

电力电子技术与新能源通讯录:

Please clik the advertisement and exit

重点

如何下载《电力电子技术与新能源板块内高清PDF电子书


点击文章底部阅读原文,访问电力电子技术与新能源论坛(www.21micro-grid.com)下载!


或者转发所要文章到朋友圈不分组不屏蔽,然后截图发给小编(微信1413043922),小编审核后将文章发你!


推荐阅读:点击标题阅读

LLC_Calculator__Vector_Method_as_an_Application_of_the_Design

自己总结的电源板Layout的一些注意点

华为电磁兼容性结构设计规范V2.0

Communication-less Coordinative Control of Paralleled Inverters

Soft Switching for SiC MOSFET Three-phase Power Conversion


看完有收获?请分享给更多人


公告:

电力电子技术与新能源微信群,欢迎加小编微信号:(QQ号)1413043922,请注明研究方向或从事行业(比如光伏逆变器硬件),小编对电力电子技术与新能源及微电网的市场发展很看好,对其关键技术很感兴趣,如有技术问题,欢迎加小编微信,共同讨论。

    在这里有电力电子技术:光伏并网逆变器(PV建模,MPPT,并网控制,LCL滤波,孤岛效应),光伏离网,光伏储能,风电变流器(双馈、直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC(LLC,移相全桥,DAB),储能(锂电池、超级电容),低电压穿越(LVRT),高电压穿越,虚拟同步发电机,多智能体,电解水,燃料电池,能量管理系统(直流微网、交流微网)以及APF,SVG ,DVR,UPQC等谐波治理和无功补偿装置等。

PSCAD/MATLABsimulink/Saber/PSPICE/PSIM——软件仿真+DSP+(TI)TMS320F2812,F28335,F28377,(Microchip)dsPIC30F3011,FPGA,ARM,STM32F334——硬件实物。
欢迎技术人员加入,多多交流,共同进步!


更多精彩点下方阅读原文

      点亮在看,小编工资涨1毛!

电力电子技术与新能源 电力电子技术,交直流微电网,光伏并网逆变器,储能逆变器,风电变流器(双馈,直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC,锂电池,超级电容,燃料电池,能量管理系统以及APF,SVG ,UPQC等
评论 (0)
  • 在当今竞争激烈的工业环境中,效率和响应速度已成为企业制胜的关键。为了满足这一需求,我们隆重推出宏集Panorama COOX,这是Panorama Suite中首款集成的制造执行系统(MES)产品。这一创新产品将Panorama平台升级为全面的工业4.0解决方案,融合了工业SCADA和MES技术的双重优势,帮助企业实现生产效率和运营能力的全面提升。深度融合SCADA与MES,开启工业新纪元宏集Panorama COOX的诞生,源于我们对创新和卓越运营的不懈追求。通过战略性收购法国知名MES领域专
    宏集科技 2025-03-27 13:22 218浏览
  • 六西格玛首先是作为一个量度质量水平的指标,它代表了近乎完美的质量的水平。如果你每天都吃一个苹果,有一间水果店的老板跟你说,他们所卖的苹果,质量达到六西格玛水平,换言之,他们每卖一百万个苹果,只会有3.4个是坏的。你算了一下,发现你如果要从这个店里买到一个坏苹果,需要805年。你会还会选择其他店吗?首先发明六西格玛这个词的人——比尔·史密斯(Bill Smith)他是摩托罗拉(Motorloa)的工程师,在追求这个近乎完美的质量水平的时候,发明了一套方法模型,开始时是MAIC,后来慢慢演变成DMA
    优思学院 2025-03-27 11:47 169浏览
  • ​2025年3月27日​,贞光科技授权代理品牌紫光同芯正式发布新一代汽车安全芯片T97-415E。作为T97-315E的迭代升级产品,该芯片以大容量存储、全球化合规认证、双SPI接口协同为核心突破,直击智能网联汽车"多场景安全并行"与"出口合规"两大行业痛点,助力车企抢占智能驾驶与全球化市场双赛道。行业趋势锚定:三大升级回应智能化浪潮1. 大容量存储:破解车联网多任务瓶颈随着​车机功能泛在化​(数字钥匙、OTA、T-BOX等安全服务集成),传统安全芯片面临存储资源挤占难题。T97-415E创新性
    贞光科技 2025-03-27 13:50 170浏览
  • WT588F02B是广州唯创电子推出的一款高性能语音芯片,广泛应用于智能家电、安防设备、玩具等领域。然而,在实际开发中,用户可能会遇到烧录失败的问题,导致项目进度受阻。本文将从下载连线、文件容量、线路长度三大核心因素出发,深入分析烧录失败的原因并提供系统化的解决方案。一、检查下载器与芯片的物理连接问题表现烧录时提示"连接超时"或"设备未响应",或烧录进度条卡顿后报错。原因解析接口错位:WT588F02B采用SPI/UART双模通信,若下载器引脚定义与芯片引脚未严格对应(如TXD/RXD交叉错误)
    广州唯创电子 2025-03-26 09:05 150浏览
  • 案例概况在丹麦哥本哈根,西门子工程师们成功完成了一项高安全设施的数据集成项目。他们利用宏集Cogent DataHub软件,将高安全设施内的设备和仪器与远程监控位置连接起来,让技术人员能够在不违反安全规定、不引入未经授权人员的情况下,远程操作所需设备。突破OPC 服务器的远程连接难题该项目最初看似是一个常规的 OPC 应用:目标是将高安全性设施中的冷水机(chiller)设备及其 OPC DA 服务器,与远程监控站的两套 SCADA 系统(作为 OPC DA 客户端)连接起来。然而,在实际实施过
    宏集科技 2025-03-27 13:20 121浏览
  • 长期以来,智能家居对于大众家庭而言就像空中楼阁一般,华而不实,更有甚者,还将智能家居认定为资本家的营销游戏。商家们举着“智慧家居、智慧办公”的口号,将原本价格亲民、能用几十年的家电器具包装成为了高档商品,而消费者们最终得到的却是家居设备之间缺乏互操作性、不同品牌生态之间互不兼容的碎片化体验。这种早期的生态割裂现象致使消费者们对智能家居兴趣缺失,也造就了“智能家居无用论”的刻板印象。然而,自Matter协议发布之后,“命运的齿轮”开始转动,智能家居中的生态割裂现象与品牌生态之间的隔阂正被基于IP架
    华普微HOPERF 2025-03-27 09:46 136浏览
  • 在智能语音产品的开发过程中,麦克风阵列的选型直接决定了用户体验的优劣。广州唯创电子提供的单麦克风与双麦克风解决方案,为不同场景下的语音交互需求提供了灵活选择。本文将深入解析两种方案的性能差异、适用场景及工程实现要点,为开发者提供系统化的设计决策依据。一、基础参数对比分析维度单麦克风方案双麦克风方案BOM成本¥1.2-2.5元¥4.8-6.5元信噪比(1m)58-62dB65-68dB拾音角度全向360°波束成形±30°功耗8mW@3.3V15mW@3.3V典型响应延迟120ms80ms二、技术原
    广州唯创电子 2025-03-27 09:23 182浏览
  • 在电子设计中,电磁兼容性(EMC)是确保设备既能抵御外部电磁干扰(EMI),又不会对自身或周围环境产生过量电磁辐射的关键。电容器、电感和磁珠作为三大核心元件,通过不同的机制协同作用,有效抑制电磁干扰。以下是其原理和应用场景的详细解析:1. 电容器:高频噪声的“吸尘器”作用原理:电容器通过“通高频、阻低频”的特性,为高频噪声提供低阻抗路径到地,形成滤波效果。例如,在电源和地之间并联电容,可吸收电源中的高频纹波和瞬态干扰。关键应用场景:电源去耦:在IC电源引脚附近放置0.1μF陶瓷电容,滤除数字电路
    时源芯微 2025-03-27 11:19 186浏览
  • 在嵌入式语音系统的开发过程中,广州唯创电子推出的WT588系列语音芯片凭借其优异的音质表现和灵活的编程特性,广泛应用于智能终端、工业控制、消费电子等领域。作为该系列芯片的关键状态指示信号,BUSY引脚的设计处理直接影响着系统交互的可靠性和功能拓展性。本文将从电路原理、应用场景、设计策略三个维度,深入解析BUSY引脚的技术特性及其工程实践要点。一、BUSY引脚工作原理与信号特性1.1 电气参数电平标准:输出3.3V TTL电平(与VDD同源)驱动能力:典型值±8mA(可直接驱动LED)响应延迟:语
    广州唯创电子 2025-03-26 09:26 218浏览
  • 汽车导航系统市场及应用环境参照调研机构GII的研究报告中的市场预测,全球汽车导航系统市场预计将于 2030年达到472亿美元的市场规模,而2024年至2030年的年复合成长率则为可观的6.7%。汽车导航系统无疑已成为智能汽车不可或缺的重要功能之一。随着人们在日常生活中对汽车导航功能的日渐依赖,一旦出现定位不准确或地图错误等问题,就可能导致车主开错路线,平白浪费更多行车时间,不仅造成行车不便,甚或可能引发交通事故的发生。有鉴于此,如果想要提供消费者完善的使用者体验,在车辆开发阶段便针对汽车导航功能
    百佳泰测试实验室 2025-03-27 14:51 221浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦