值得收藏!十大单片机ADC滤波算法(C语言版)

小麦大叔 2025-02-26 19:00
一、限幅滤波法

1、方法:
    • 根据经验判断两次采样允许的最大偏差值(设为A)
    • 每次检测到新值时判断:
a. 如果本次值与上次值之差<=A,则本次值有效
b. 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值

2、优点:
    • 能有效克服因偶然因素引起的脉冲干扰

3、缺点
    • 无法抑制那种周期性的干扰
    • 平滑度差
/* A值根据实际调,Value有效值,new_Value当前采样值,程序返回有效的实际值 */
#define A 10
char Value;
char filter()
{
    char new_Value;
    new_Value = get_ad(); // 获取采样值
    ifabs(new_Value - Value) > A)   
        return Value;     // abs()取绝对值函数
    return new_Value;
}


二、中位值滤波法

1、方法:
    • 连续采样N次(N取奇数),把N次采样值按大小排列
    • 取中间值为本次有效值

2、优点:
    • 能有效克服因偶然因素引起的波动干扰
    • 对温度、液位的变化缓慢的被测参数有良好的滤波效果


3、缺点:

    • 对流量、速度等快速变化的参数不宜
#define N 11
char filter()
{
    char value_buf[N];
    char count, i, j, temp;
    for(count = 0; count < N; count ++) //获取采样值
    {
        value_buf[count] = get_ad();
        delay();
    }
    for(j = 0; j < (N-1); j++)
    {
        for(i = 0; i < (n-j); i++)
        {
            if(value_buf[i] > value_buf[i+1])
            {
                temp = value_buf[i];
                value_buf[i] = value_buf[i+1];
                value_buf[i+1] = temp;
            }
        }
    }
    return value_buf[(N-1)/2];
}


三、算术平均滤波法

1、方法:
    • 连续取N个采样值进行算术平均运算
    • N值较大时:信号平滑度较高,但灵敏度较低
    • N值较小时:信号平滑度较低,但灵敏度较高
    • N值的选取:一般流量,N=12;压力:N=4
2、优点:
    • 适用于对一般具有随机干扰的信号进行滤波
    • 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动
3、缺点:
    • 对于测量速度较慢或要求数据计算速度较快的实时控制不适用
    • 比较浪费RAM
#define N 12
char filter()
{
    int sum = 0;
    for(count = 0; count < N; count++)
    {
        sum += get_ad();
    } 
    return (char)(sum/N);
}


四、递推平均滤波法

1、方法:
    • 把连续取N个采样值看成一个队列
    • 队列的长度固定为N
    • 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)
    • 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果
    • N值的选取:流量,N=12;压力:N=4;液面,N=4 ~ 12;温度,N=1 ~ 4
2、优点:
    • 对周期性干扰有良好的抑制作用,平滑度高
    • 适用于高频振荡的系统
3、缺点:
    • 灵敏度低
    • 对偶然出现的脉冲性干扰的抑制作用较差
    • 不易消除由于脉冲干扰所引起的采样值偏差
    • 不适用于脉冲干扰比较严重的场合
    • 比较浪费RAM
/* A值根据实际调,Value有效值,new_Value当前采样值,程序返回有效的实际值 */
#define A 10
char Value;
char filter()
{
    char new_Value;
    new_Value = get_ad(); // 获取采样值
    ifabs(new_Value - Value) > A)   
        return Value;     // abs()取绝对值函数
    return new_Value;
}


五、中位值平均滤波法

1、方法:
    • 相当于“中位值滤波法”+“算术平均滤波法”
    • 连续采样N个数据,去掉一个最大值和一个最小值
    • 然后计算N-2个数据的算术平均值
    • N值的选取:3~14
2、优点:
    • 融合了两种滤波法的优点
    • 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
3、缺点:
    • 测量速度较慢,和算术平均滤波法一样
    • 比较浪费RAM
char filter()
{
    char count, i, j;
    char Value_buf[N];
    int sum = 0;
    for(count = 0; count < N; count++)
    {
        Value_buf[count] = get_ad();
    } 
    for(j = 0; j < (N-1); j++)
    {
        for(i = 0; i < (N-j); i++)
        {
            if(Value_buf[i] > Value_buf[i+1])
            {
                temp = Value_buf[i];
                Value_buf[i] = Value_buf[i+1];
                Value_buf[i+1] = temp;
            }
        }  
    }    
    for(count = 1; count < N-1; count ++)
    {
        sum += Value_buf[count];
    }
    return (char)(sum/(N-2));
}


六、限幅平均滤波法

1、方法:
    • 相当于“限幅滤波法”+“递推平均滤波法”
    • 每次采样到的新数据先进行限幅处理,
    • 再送入队列进行递推平均滤波处理
2、优点:
    • 融合了两种滤波法的优点
    • 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
3、缺点:
    • 比较浪费RAM
#define A 10
#define N 12
char value, i = 0;
char value_buf[N];
char filter()
{
    char new_value, sum = 0;
    new_value = get_ad();
    if(Abs(new_value - value) < A)  
        value_buf[i++] = new_value;
    if(i==N)  
        i=0;
    for(count = 0; count < N; count++)
    {
        sum += value_buf[count];
    }
    return (char)(sum/N);
}


七、一阶滞后滤波法

1、方法:
    • 取a=0~1
    • 本次滤波结果=(1-a)本次采样值+a上次滤波结果
2、优点:
    • 对周期性干扰具有良好的抑制作用
    • 适用于波动频率较高的场合
3、缺点:
    • 相位滞后,灵敏度低
    • 滞后程度取决于a值大小
    • 不能消除滤波频率高于采样频率的1/2的干扰信号
/*为加快程序处理速度,取a=0~100*/
#define a 30
char value;
char filter()
{
    char new_value;
    new_value = get_ad();
    return ((100-a)*value + a*new_value);
}


八、加权递推平均滤波法

1、方法:
    • 是对递推平均滤波法的改进,即不同时刻的数据加以不同的权
    • 通常是,越接近现时刻的数据,权取得越大。
    • 给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低
2、优点:
    • 适用于有较大纯滞后时间常数的对象
    • 和采样周期较短的系统
3、缺点:
    • 对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号
    • 不能迅速反应交易系统当前所受干扰的严重程度,滤波效果差
/* coe数组为加权系数表 */
#define N 12
char code coe[N] = {123456789101112};
char code sum_coe = {10 11 12};
char filter()
{
    char count;
    char value_buf[N];
    int sum = 0;
    for(count = 0; count < N; count++)
    {
        value_buf[count] = get_ad();
    }
    for(count = 0; count < N; count++)
    {
        sum += value_buf[count] * coe[count];
    } 
    return (char)(sum/sum_coe);
}


九、消抖滤波法

1、方法:
    • 设置一个滤波计数器
    • 将每次采样值与当前有效值比较:
    • 如果采样值=当前有效值,则计数器清零
    • 如果采样值>或<当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出)
    • 如果计数器溢出,则将本次值替换当前有效值,并清计数器
2、优点:
    • 对于变化缓慢的被测参数有较好的滤波效果,
    • 可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动
3、缺点:
    • 对于快速变化的参数不宜
    • 如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入交易系统
#define N 12
char filter()
{
    char count = 0, new_value;
    new_value = get_ad();
    while(value != new_value)
    {
        count++;
        if(count >= N) 
            return new_value;
        new_value = get_ad();
    }
    return value;
}


十、限幅消抖滤波法

1、方法:
    • 相当于“限幅滤波法”+“消抖滤波法”
    • 先限幅,后消抖
2、优点:
    • 继承了“限幅”和“消抖”的优点
    • 改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统
3、缺点:
    • 对于快速变化的参数不宜
#define A 10
#define N 12
char value;
char filter()
{
    char new_value, count = 0;
    new_value = get_ad();
    while(value != new_value)
    {
        if(Abs(value - new_value) < A)
        {
            count++;
            if(count >= N) 
                return new_value;
            new_value = get_ad();
        }
        return value;
    }
}


最后

🫵兄弟们!一个人单打独斗确实能冲得挺快,但要想走得更远、更稳,还得靠一群志同道合的伙伴啊!

👊 麦鸽的知识星球现在已经聚集了一波人,大家都在这里互相学习、共同进步。


如果你也想找个靠谱的学习圈子,赶紧   戳链接 🔗 加入我们吧!

在这里,你能读到星球专栏的干货,优质教程,练手项目,随时向麦鸽提问,还能帮你定制学习计划。别犹豫了,兄弟,一起冲!💪



往期推荐



软件BUG搞半天,原来是电源问题!嵌入式EMI破壁指南

手残党亲测!把激光雷达大卸八块后,我发现了这些惊天秘密...

160亿到0.4刀!自动驾驶第一股的"跳崖式"消亡实录

开源!基于STM32的轻量级事件框架cpost设计全解析

开源!新手练级好项目,基于STM32的简易示波器


小麦大叔 一位热衷技术的攻城狮,懂点技术,会讲故事,交个朋友?
评论 (0)
  • ​2025年3月27日​,贞光科技授权代理品牌紫光同芯正式发布新一代汽车安全芯片T97-415E。作为T97-315E的迭代升级产品,该芯片以大容量存储、全球化合规认证、双SPI接口协同为核心突破,直击智能网联汽车"多场景安全并行"与"出口合规"两大行业痛点,助力车企抢占智能驾驶与全球化市场双赛道。行业趋势锚定:三大升级回应智能化浪潮1. 大容量存储:破解车联网多任务瓶颈随着​车机功能泛在化​(数字钥匙、OTA、T-BOX等安全服务集成),传统安全芯片面临存储资源挤占难题。T97-415E创新性
    贞光科技 2025-03-27 13:50 148浏览
  • WT588F02B是广州唯创电子推出的一款高性能语音芯片,广泛应用于智能家电、安防设备、玩具等领域。然而,在实际开发中,用户可能会遇到烧录失败的问题,导致项目进度受阻。本文将从下载连线、文件容量、线路长度三大核心因素出发,深入分析烧录失败的原因并提供系统化的解决方案。一、检查下载器与芯片的物理连接问题表现烧录时提示"连接超时"或"设备未响应",或烧录进度条卡顿后报错。原因解析接口错位:WT588F02B采用SPI/UART双模通信,若下载器引脚定义与芯片引脚未严格对应(如TXD/RXD交叉错误)
    广州唯创电子 2025-03-26 09:05 146浏览
  • 文/陈昊编辑/cc孙聪颖‍2025 年,作为中国实施制造强国战略第一个十年计划的关键里程碑,被赋予了极为重大的意义。两会政府工作报告清晰且坚定地指出,要全力加速新质生产力的发展进程,推动传统产业全方位向高端化、智能化与绿色化转型。基于此,有代表敏锐提议,中国制造应从前沿技术的应用切入,逐步拓展至产业生态的构建,最终延伸到提升用户体验的维度,打出独树一帜、具有鲜明特色的发展牌。正是在这样至关重要的时代背景之下,于 AWE 2025(中国家电及消费电子博览会)这一备受瞩目的舞台上,高端厨房的中国方案
    华尔街科技眼 2025-03-25 16:10 85浏览
  • 在智能语音产品的开发过程中,麦克风阵列的选型直接决定了用户体验的优劣。广州唯创电子提供的单麦克风与双麦克风解决方案,为不同场景下的语音交互需求提供了灵活选择。本文将深入解析两种方案的性能差异、适用场景及工程实现要点,为开发者提供系统化的设计决策依据。一、基础参数对比分析维度单麦克风方案双麦克风方案BOM成本¥1.2-2.5元¥4.8-6.5元信噪比(1m)58-62dB65-68dB拾音角度全向360°波束成形±30°功耗8mW@3.3V15mW@3.3V典型响应延迟120ms80ms二、技术原
    广州唯创电子 2025-03-27 09:23 165浏览
  • 在电子设计中,电磁兼容性(EMC)是确保设备既能抵御外部电磁干扰(EMI),又不会对自身或周围环境产生过量电磁辐射的关键。电容器、电感和磁珠作为三大核心元件,通过不同的机制协同作用,有效抑制电磁干扰。以下是其原理和应用场景的详细解析:1. 电容器:高频噪声的“吸尘器”作用原理:电容器通过“通高频、阻低频”的特性,为高频噪声提供低阻抗路径到地,形成滤波效果。例如,在电源和地之间并联电容,可吸收电源中的高频纹波和瞬态干扰。关键应用场景:电源去耦:在IC电源引脚附近放置0.1μF陶瓷电容,滤除数字电路
    时源芯微 2025-03-27 11:19 163浏览
  • 六西格玛首先是作为一个量度质量水平的指标,它代表了近乎完美的质量的水平。如果你每天都吃一个苹果,有一间水果店的老板跟你说,他们所卖的苹果,质量达到六西格玛水平,换言之,他们每卖一百万个苹果,只会有3.4个是坏的。你算了一下,发现你如果要从这个店里买到一个坏苹果,需要805年。你会还会选择其他店吗?首先发明六西格玛这个词的人——比尔·史密斯(Bill Smith)他是摩托罗拉(Motorloa)的工程师,在追求这个近乎完美的质量水平的时候,发明了一套方法模型,开始时是MAIC,后来慢慢演变成DMA
    优思学院 2025-03-27 11:47 151浏览
  • 在当今竞争激烈的工业环境中,效率和响应速度已成为企业制胜的关键。为了满足这一需求,我们隆重推出宏集Panorama COOX,这是Panorama Suite中首款集成的制造执行系统(MES)产品。这一创新产品将Panorama平台升级为全面的工业4.0解决方案,融合了工业SCADA和MES技术的双重优势,帮助企业实现生产效率和运营能力的全面提升。深度融合SCADA与MES,开启工业新纪元宏集Panorama COOX的诞生,源于我们对创新和卓越运营的不懈追求。通过战略性收购法国知名MES领域专
    宏集科技 2025-03-27 13:22 192浏览
  • 长期以来,智能家居对于大众家庭而言就像空中楼阁一般,华而不实,更有甚者,还将智能家居认定为资本家的营销游戏。商家们举着“智慧家居、智慧办公”的口号,将原本价格亲民、能用几十年的家电器具包装成为了高档商品,而消费者们最终得到的却是家居设备之间缺乏互操作性、不同品牌生态之间互不兼容的碎片化体验。这种早期的生态割裂现象致使消费者们对智能家居兴趣缺失,也造就了“智能家居无用论”的刻板印象。然而,自Matter协议发布之后,“命运的齿轮”开始转动,智能家居中的生态割裂现象与品牌生态之间的隔阂正被基于IP架
    华普微HOPERF 2025-03-27 09:46 111浏览
  • 汽车导航系统市场及应用环境参照调研机构GII的研究报告中的市场预测,全球汽车导航系统市场预计将于 2030年达到472亿美元的市场规模,而2024年至2030年的年复合成长率则为可观的6.7%。汽车导航系统无疑已成为智能汽车不可或缺的重要功能之一。随着人们在日常生活中对汽车导航功能的日渐依赖,一旦出现定位不准确或地图错误等问题,就可能导致车主开错路线,平白浪费更多行车时间,不仅造成行车不便,甚或可能引发交通事故的发生。有鉴于此,如果想要提供消费者完善的使用者体验,在车辆开发阶段便针对汽车导航功能
    百佳泰测试实验室 2025-03-27 14:51 191浏览
  • 案例概况在丹麦哥本哈根,西门子工程师们成功完成了一项高安全设施的数据集成项目。他们利用宏集Cogent DataHub软件,将高安全设施内的设备和仪器与远程监控位置连接起来,让技术人员能够在不违反安全规定、不引入未经授权人员的情况下,远程操作所需设备。突破OPC 服务器的远程连接难题该项目最初看似是一个常规的 OPC 应用:目标是将高安全性设施中的冷水机(chiller)设备及其 OPC DA 服务器,与远程监控站的两套 SCADA 系统(作为 OPC DA 客户端)连接起来。然而,在实际实施过
    宏集科技 2025-03-27 13:20 109浏览
  • 在嵌入式语音系统的开发过程中,广州唯创电子推出的WT588系列语音芯片凭借其优异的音质表现和灵活的编程特性,广泛应用于智能终端、工业控制、消费电子等领域。作为该系列芯片的关键状态指示信号,BUSY引脚的设计处理直接影响着系统交互的可靠性和功能拓展性。本文将从电路原理、应用场景、设计策略三个维度,深入解析BUSY引脚的技术特性及其工程实践要点。一、BUSY引脚工作原理与信号特性1.1 电气参数电平标准:输出3.3V TTL电平(与VDD同源)驱动能力:典型值±8mA(可直接驱动LED)响应延迟:语
    广州唯创电子 2025-03-26 09:26 206浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦