【干货】图像数字化及处理方法

嵌入式客栈 2021-02-01 00:00


关注、星标 嵌入式客栈 ,精彩及时送达
整理:最后一个Bug (公众号)
来源:该文来源于公号 : 小白学视觉,文章作者:CSDN博主aaaaabin,仅供大家学习交流,版权归原作者所有。如涉及作品版权问题,请联系我进行删除。


1、精彩内容

本文大部分内容来源于网络,部分为自己理解的标注,应该对大家学习机器视觉和图像处理非常有帮助。

图像的数字化

一般的图像(模拟图像)不能直接用计算机来处理,必须首先转化为数字图像
把模拟图像分割成一个个称为像素的小区域,每个像素的亮度或灰度值用一个整数表示

数字化的含义:

使模拟图像的灰度、亮度和色彩数据化

图像数字化的步骤:

两个步骤:
1、在空间坐标对图像离散化——图像采样
2、在幅度上离散化——灰度级量化(取整)
图像采样示意图:
也就是在xy轴上(空间坐标)将完整的一幅图像定义在从某些位置上“拆解”(离散)成最小单位即像素,用坐标(x,y)表示像素点之间的位置关系。
将虚拟图像转换为数字图像是为了达到计算机进行处理的目的。虚拟图像转换为数字图像的方式就是把虚拟图像由像素点来表示。
数字图像,它是由像素点(图像的最小单位)构成的,每个像素点表示着一个灰度值在平面坐标系上矩阵排布,这些灰度值按照一定的关系组合在一起形成了图像。至此,既然图像的操作单元以及它的排布关系已经确定了,那么就可以通过计算机对其计算处理。
为什么是灰度?
这个问题我最早也困惑为什么不是红度?绿度?蓝度?,后来想想无论红的绿的蓝的黑的都可以,确定图像完全可以由任意颜色的0~255之间的值来表示。偏向于灰度可能是因为灰的极端为黑白两种鲜明的对比色也或许是因为早期的成像都是黑白。

灰度值量化

经过采样,模拟图像已在空间上离散化为像素,但抽样所得的像素值仍是连续量(非整数),必须将其化为正整数——灰度级的量化。
若抽样点(素)的连续浓淡值为Zi ,Zi-1 <= Zi < Zi+1,则Zi = qi,即Zi量化为整数qi,qi称为像素的灰度值
(所谓量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。经过抽样的图像,只是在空间上被离散成为像素(样本)的阵列。而每个样本灰度值还是一个由无穷多个取值的连续变化量,必须将其转化为有限个离散值,赋予不同码字才能真正成为数字图像。这种转化称为量化。)
一般,灰度图像常量化为8位图像。
数字图像数据量的计算
抽样点数越多,图像像素数目越多,图像数据量越大
量化级别越高,图像每个像素所占用的字节越长,图像数据量越大。
一幅数字图像的总数据量可用公式计算:
数据量 = M * N * b
M——每行像素量
N——每列像素量
b——灰度量化所占用的位数或字节数
例如:一幅8位灰度图像,大小为512*512,其数据量多大?
512*512*8bit = 512*512*1k = 512*512 / 1024 = 256 kb
数字图像处理的实质:
通过对数字图像中像素数据的判断,依据处理或识别要求,最后逐个修改像素的灰度值。
数字图像的数据以矩阵形式排列
一幅M*N个像素的数字图像,其像素灰度值的排列实际形成了一个M行N列的矩阵F,数字图像中的像素与矩阵元素是一 一对应的
矩阵可用二维数组来表示
一个M*N像素的矩阵,在算法语言中,可以用一个M*N的二维数组来表示。
此后对像素的处理就代之以对数组元素的处理,很容易用计算机来实现。
如何用高级语言实现图像处理?
在图像处理中,一般都是顺序完成对整幅画面的存取和处理操作的,具有代表性的是以光栅扫描方式——逐行逐列存取与处理。
若数字图像的大小为M*N(width*height)个像素,数组元素灰度值为 f(x,y),则C语言处理程序的基本框架为:
从程序显而易见,计算机处理数字图像是从每个像素点逐个处理。
图像二值化流程:
二值化处理的程序(一个CVI例子程序)
程序逐个判断像素点的pixel_value > Th ? 如果为true 设置此像素点的灰度值为255,为false设置此像素点的灰度值为0,由此处理后的图像会呈现黑白鲜明的对比。
处理结果:
图像处理的方法多种多样,从实现处理的过程看有两类: 空域处理 频域处理。
空域: 即空间域,指灰度图像本身,图像是一种灰度在二维空间变化的信息
空域处理: 对源图像像素的灰度值直接运算,生成新的图像,被操作者是像素的灰度值。
空域处理可分为以下几种方式:
  • 点处理

  • 区域处理

  • 迭代处理

  • 跟踪处理

点处理: 是指输出像素值仅取决于对应输入像素的像素值。
若输入像素灰度值为f(x,y),
输出像素灰度值为g(x,y),
则g(x,y) = ▲f(x,y) ,
▲代表某种函数关系式。
点处理的典型用途:
调整图像的灰度分布,如灰度变换(线性、非线性)和灰度修正;
图像的二值化;
图像反色;

点处理方法的优点:
可用LUT方法快速实现;
区域处理——领域处理
算法:
根据输入图像某像素f(x,y)的一个小领域N(f(x,y))的像素值,按某种函数关系▲得到输出像素g(x,y)的值,即g(x,y)=▲(N(f(x,y)))
区域处理中的领(区)域的形状
领域N(f(x,y))的形状是多种多样的;实用中多采用以像素(x,y)为中心的矩形对称领域如3*3、5*5等
领域越大,计算量越大,若图像大小为M*N,领域为K*L,则领域处理时总计算量为M*N*K*L。
领域处理的用途
图像的平滑(滤波)
图像的锐化(增强)
图像的形态学处理等
迭代处理:
迭代是指反复进行某种处理运算。
迭代处理多用于图像细化、图像增强、图像平滑及边缘探测等方面。
跟踪处理:
跟踪处理一般用于图像边界、边缘的提取,以便进行图像的分割、识别及特征参数的计算。
边缘提取的原理在于判断目标里外两像素点灰度值差,若差大于某个特定值即可断定这个像素点的位置为目标边缘。
图像处理方法二:频域处理
为什么要采用频域处理?
灰度图像的边缘、线条——高频成分
其余部分灰度值改变不大——低频成分
观察图像的高频和低频成分。因此采用频率分析——变换方法有利于对图像进行特征提取及图像增强的处理。
图像在频域上处理的一般过程:
频域处理是建里在修改图像傅里叶变换基础之上的——增强感兴趣的频率分量,然后将修改后的傅里叶变换直再做逆傅里叶变换,以得到增强的图像,一般过程:

End

该文来源于公号 : 小白学视觉,文章作者:CSDN博主aaaaabin,仅供大家学习交流,版权归原 作者所有。如涉及作品版权问题,请联系我进行删除。

2、最后小记

   搞视觉和图像必备的一些图像处理知识和处理办法,这块技术还是有很高的可玩性的,感兴趣的可以更加深入学习。

END

往期精彩推荐,点击即可阅读




▲Linux驱动相关专辑 
手把手教信号处理专辑
片机相关专辑

分享   点赞   在看 ️ 

以“三连”行动支持优质内容!

嵌入式客栈 欢迎关注嵌入式客栈,主要分享嵌入式Linux系统构建、嵌入式linux驱动开发、单片机技术、FPGA开发、信号处理、工业通讯等技术主题。欢迎关注,一起交流,一起进步!
评论
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 88浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 103浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 135浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 131浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 134浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 111浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 153浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 104浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 121浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 86浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 141浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 88浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦