开发者分享 | Petalinux 工程中设备树的介绍

FPGA开发圈 2021-01-29 00:00

点击蓝字 关注我们


本文来自XILINX嵌入式产品应用工程师 Terry Ni

设备树是 Petalinux kernel 的关键组件,接下来以 2020.1 版本为例,为大家介绍一下在Xilinx Petalinux 工程中的设备树是如何产生,配置以及修改的。


Petalinux 工程中设备树的位置 

当我们创建了一个 petalinux 工程后(以zcu102为例),在编译的时候,会自动生成对应的设备树文件。这些设备树的描述信息通常在以下2个工程路径下。

第一个是在 components/plnx_workspace/device-tree/device-tree 路径下,这个路径下主要保存的都是基于你导入的hdf/xsa后,自动生成的设备树信息。通常包括PS的设备树,时钟的设备树,PL 部分 IP 的设备树(Xilinx发布的包含驱动的IP),以及设备树头文件。

./components/plnx_workspace/device-tree/device-tree/zynqmp-clk-ccf.dtsi

./components/plnx_workspace/device-tree/device-tree/zcu102-revc.dtsi

./components/plnx_workspace/device-tree/device-tree/pl.dtsi

./components/plnx_workspace/device-tree/device-tree/system-top.dts

./components/plnx_workspace/device-tree/device-tree/zynqmp.dtsi

./components/plnx_workspace/device-tree/device-tree/system-conf.dtsi

./components/plnx_workspace/device-tree/device-tree/pcw.dtsi


另一个是在 project-spec/meta-user/recipes-bsp/device-tree/files路径下,这个路径下主要就是用户基于自动生成的设备树,自行添加和修改的部分。这部分可以查看 UG1144 第10章 Device Tree Configuration 节的内容。

./project-spec/meta-user/recipes-bsp/device-tree/files/openamp.dtsi

./project-spec/meta-user/recipes-bsp/device-tree/files/system-user.dtsi

./project-spec/meta-user/recipes-bsp/device-tree/files/pl-custom.dtsi

./project-spec/meta-user/recipes-bsp/device-tree/files/xen-qemu.dtsi

./project-spec/meta-user/recipes-bsp/device-tree/files/xen.dtsi


需要注意的是,如果 petalinux-config->DTGsettings->MACHINE_NAME 采用的是xilinx开发板预设的名称的话(UG1144DTG Settings 章节中的 Machine name 的说明),那么会自动生成对应开发板相关的设备树信息。

所以如果使用的是自己的硬件平台,那么尽量不要使用预设的名称,这样可以避免导入多余的设备树信息从而导致编译失败或者最终功能不正确。



如何修改设备树 

1. 基于自动生成的设备树,添加和修改节点。

通过修改./project-spec/meta-user/recipes-bsp/device-tree/files/system-user.dtsi,来实现对之前已经定义的设备树节点中的属性进行变更,也可以添加没有自动生成的设备树节点。

/dts-v1/;

/include/ "system-conf.dtsi"

/ {

};

&gem0 {

phy-handle = <&phy0>;

ps7_ethernet_0_mdio: mdio {

phy0: phy@7 {

compatible = "marvell,88e1116r";

device_type = "ethernet-phy";

reg = <7>;

};

};

};

 

gpio-leds {

    compatible = "gpio-leds";

    led-ds23 {

        label = "led-ds23";

        gpios = <&ps7_gpio_0 10 0>;

        default-state = "on";

        linux,default-trigger = "heartbeat";

    };

};

有时候为了方便设备树的管理,可以定义多个设备树文件,然后在 system-user.dtsi 中将这些设备树文件都包含进去,如下所示。

/include/ "system-conf.dtsi"

/include/ "system-user-1.dtsi"

/include/ "system-user-2.dtsi"

/include/ "system-user-3.dtsi"


/ {

};

当添加了其他的dtsi文件后,还需要修改./project-spec/meta-user/recipes-bsp/device-tree/device-tree.bbappend 文件,将这些 dtsi 文件的路径信息包含进去。如下所示。


SRC_URI += "file://system-user.dtsi"

SRC_URI += "file://system-user-1.dtsi"

SRC_URI += "file://system-user-2.dtsi"

SRC_URI += "file://system-user-3.dtsi"


2. 完全使用自己的设备树

我们还可以更改 petalinux-config-> Auto Config Settings  中的配置,直接使用自己编写好的设备树。


取消 Devicetree autoconfig,使能 Specify a manual device tree include directory, 然后指定设备树的路径地址。


     怎么描述设备树 

设备树中描述的信息都是要与 kernel中设备的驱动互相对应的。如果驱动中需要某个参数,但是设备树中并没有包含,很可能就会编译错误或者直接使用了默认值,从而导致工作异常。kernel 的设备驱动中,一般都会包含设备树的描述说明来保证设备树的正确。你可以在 git上的 kernel 源码中找到响应的设备树说明。以 GPIO 驱动为例。你可以找到相关的设备树描述信息如下。

https://github.com/Xilinx/linux-xlnx/blob/xlnx_rebase_v5.4_2020.1/Documentation/devicetree/bindings/gpio/gpio-zynq.txt


Example:


gpio@e000a000 {


#gpio-cells = <2>;


compatible = "xlnx,zynq-gpio-1.0";


clocks = <&clkc 42>;


gpio-controller;


interrupt-parent = <&intc>;


interrupts = <0 20 4>;


interrupt-controller;


#interrupt-cells = <2>;


reg = <0xe000a000 0x1000>;

 

};

另外,你可以查看 xilinx wiki上 linux driver 的主题页面来获取所有 Xilinx 支持的设备驱动内容,其中包含有各个设备树的例子以及相关配置等说明。

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841873/Linux+Drivers

 


反编译设备树

为了最终确认设备树是否正确,我们可以通过 dtc 这个小应用,将 dtb 文件反编译成 dts 设备树文件。这个设备树文件,从 system-top.dts 这个 top 文件开始,把所有包含的设备树内容都整合到了一个 dts 文件中,便于我们确认最终的设备树是否正确。其命令格式如下


dtc-I dtb -O dts -o system.dts system.dtb


                                

关注我们

FPGA开发圈 这里介绍、交流、有关FPGA开发资料(文档下载,技术解答等),提升FPGA应用能力。
评论 (0)
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 64浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 96浏览
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 62浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 108浏览
  • 置信区间反映的是“样本均值”这个统计量的不确定性,因此使用的是标准误(standard error),而不是直接用样本标准差(standard deviation)。标准误体现的是均值的波动程度,而样本标准差体现的是个体数据的波动程度,两者并非一回事,就如下图所显示的一样。下面优思学院会一步一步解释清楚:一、标准差和标准误,究竟差在哪?很多同学对“标准差”和“标准误”这两个概念傻傻分不清楚,但其实差别明显:标准差(Standard Deviation,σ或s):是衡量单个数据点相对于平均值波动的
    优思学院 2025-04-17 13:59 24浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 33浏览
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 52浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 124浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 49浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 64浏览
  • 【摘要/前言】4月春日花正好,Electronica就在浪漫春日里,盛大启幕。2025年4月15-17日,慕尼黑上海电子展于上海新国际博览中心成功举办。伴随着AI、新能源汽车、半导体的热潮,今年的Electronica盛况空前。请跟随Samtec的视角,感受精彩时刻!【 Samtec展台:老虎的朋友圈技术派对】借天时、占地利、聚人和,Samtec 展台人气爆棚!每年展会与大家相聚,总能收获温暖与动力~Samtec展台位于W3展馆716展位,新老朋友相聚于此,俨然一场线下技术派对!前沿D
    电子资讯报 2025-04-17 11:38 34浏览
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 69浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦