三代进化,安森美EliteSiCMOSFET技术发展解析

原创 安森美 2025-02-19 19:00

点击蓝字 关注我们

SiC 器件性能表现突出,能实现高功率密度设计,有效应对关键环境和能源成本挑战,也因此越来越受到电力电子领域的青睐。与硅 (Si) MOSFET 和 IGBT 相比,SiC 器件的运行频率更高,有助于实现高功率密度设计、减少散热、提高能效,并减轻电源转换器的重量。其独特的材料特性可以减少开关和导通损耗。与 Si MOSFET 相比,SiC 器件的电介质击穿强度更高、能量带隙更宽且热导率更优,有利于开发更紧凑、更高效的电源转换器。


安森美 (onsemi)的 1200V 分立器件和模块中的 M3S 技术已经发布。M3S MOSFET 的导通电阻和开关损耗均较低,提供 650 V 和 1200 V 两种电压等级选项。本白皮书侧重于探讨专为低电池电压领域的高速开关应用而设计的先进 onsemi M3S 650 V SiC MOSFET 技术。通过各种特性测试和仿真,评估了 MOSFET 相对于同等竞争产品的性能。本文为第一篇,将重点介绍SiC MOSFET的基础知识、M3S 技术和产品组合。


简介

虽然 SiC 器件已在工业领域应用多年,但在汽车行业的应用仍处于早期阶段。该器件广泛用在各种电动汽车器件中,例如主驱逆变器、DC-DC 转换器、辅助电源装置等。SiC MOSFET 为车载 DC-DC 转换器带来了诸多优势,包括更低的开关和导通损耗、更高的效率和功率密度以及更宽的温度范围。


SiC MOSFET 的另一个车载应用场景是车载充电器 (OBC)。目前,大多数电动和插电式混合动力汽车 (PHEV) 都配备了车载充电器,可以通过插座或交流充电站为电池充电。使用 SiC 器件替代基于 Si 的电源 MOSFET 可以提高车载充电器的功率密度和能效,同时相关 SiC 系统的成本也比基于 Si 的车载充电器更低 [1]。


在设计车载 DC-DC 转换器和车载充电器时,工程师总是难以妥善调整 SiC 器件并充分发挥该技术的潜力。为了减小磁性器件的体积并提高变换器的性能,可以提高电源器件的开关频率。得益于 SiC 的材料特性,与 Si MOSFET 和 IGBT 相比,其开关和导通损耗更低 [2]。


M3S 技术和产品组合

a. 技术说明

安森美 EliteSiC MOSFET 技术历经了三代发展。第一代 M1 采用经典的平面 DMOS 结构,关键尺寸适中,标志着安森美首次进军 SiC MOSFET 市场。


第二代 M2 实现了重大进展。布局从正方形转变为细长的六边形,从而提高了单元电芯密度。此外,衬底减薄 70% 以上,有效降低了寄生电阻,使特定导通电阻 (RSP) 下降 20%。


第三代 M3 引入了更多创新。先前的方形和六边形几何单元电芯被条形设计所取代,大幅减小了单元电芯间距。与 M2 相比,此次改进使 RSP 又降低 30%。M3 技术部署到了两种特定应用的产品中:M3S 和 M3E/M3T。M3E 产品旨在满足主驱逆变器应用的要求,短路耐受时间约为 1.5 µs,但这是以牺牲 RSP 为代价的。另一方面,本文重点介绍的 M3S 实现了超低 RSP,并且不受短路耐受时间的限制,是车载充电器和高压 DC-DC 转换器等高速应用的理想选择。


image.png

图 1. EliteSiC MOSFET 的技术演进


b. 产品组合

M3S 650 V SiC MOSFET 器件用于竞争激烈且成本敏感的 400 V 电动汽车市场,可广泛应用于车载充电器和 DC-DC 转换器。


该器件有三种不同的封装选项(TO-247-3、TO-247-4 和 D2Pak),导通电阻分别为 23 mΩ 和 32 mΩ。三种封装的电容相似,而功耗 (PD) 和结至外壳热阻 (RθJC) 略有差异。三引脚和四引脚 TO-247 之间的区别在于,通过开尔文源连接,四引脚版本的开关性能更佳。使用第四个驱动源引脚可将栅极环路中的寄生电感降至更低。降低漏源电压尖峰和栅极振铃可降低 EMI 并提高可靠性。


D2PAK 旨在帮助降低寄生电感并提高机械稳健性,其紧凑的尺寸可实现高集成度和高密度设计。然而,与 TO-247 封装相比,D2PAK 的热管理设计更具挑战性。TO-247 封装支持将其散热焊盘直接连接到散热片。然而,D2PAK 的散热焊盘焊接到印刷电路板 (PCB) 上,然后连接到散热片,从而在路径中引入了额外的热阻。


表 1. M3S 650 V SiC MOSFET 已发布产品

image.png


参考文献

[1]     B.Shi, A.Ramones, Y.Liu, H.Wang, Y.Li, S.Pischinger, J.Andert, “A review of silicon carbide MOSFETs in electrified vehicles: Application, challenges, and future development” in IET Power Electronics, vol. 16, no. 12, 2017. https://doi.org/10.1049/pel2.12524.

B.Shi、A.Ramones、Y.Liu、H.Wang、Y.Li、S.Pischinger、J.Andert,“电动汽车中碳化硅 MOSFET 的综述:应用、挑战与未来发展”(A review of silicon carbide MOSFETs in electrified vehicles: Application, challenges, and future development),《IET Power Electronics》,第 16 卷,第 12 期,2017 年。https://doi.org/10.1049/pel2.12524。

[2]     J. Yuan, L. Dorn-Gomba, A. D. Callegaro, J. Reimers and A. Emadi, “A Review of Bidirectional On-Board Chargers for Electric Vehicles,” in IEEE Access, vol. 9, pp. 51501-51518, 2021, doi: 10.1109/ACCESS.2021.3069448.

J.Yuan, L. Dorn-Gomba, A. D.Callegaro、J. Reimers 和 A. Emadi,“电动汽车双向车载充电器综述”(A Review of Bidirectional On-Board Chargers for Electric Vehicles),《IEEE Access》,第 9 卷,第 51501-51518 页,2021 年,doi:10.1109/ACCESS.2021.3069448。


未完待续~



⭐点个星标,茫茫人海也能一眼看到我⭐

图片

图片

别着急走,记得点赞在看
图片

安森美 安森美(onsemi, 纳斯达克股票代码:ON)专注于汽车和工业终端市场,包括汽车功能电子化和安全、可持续能源网、工业自动化以及5G和云基础设施等。以高度差异化的创新产品组合,创造智能电源和感知技术,解决最复杂的挑战,帮助建设更美好的未来。
评论 (0)
  • 六西格玛首先是作为一个量度质量水平的指标,它代表了近乎完美的质量的水平。如果你每天都吃一个苹果,有一间水果店的老板跟你说,他们所卖的苹果,质量达到六西格玛水平,换言之,他们每卖一百万个苹果,只会有3.4个是坏的。你算了一下,发现你如果要从这个店里买到一个坏苹果,需要805年。你会还会选择其他店吗?首先发明六西格玛这个词的人——比尔·史密斯(Bill Smith)他是摩托罗拉(Motorloa)的工程师,在追求这个近乎完美的质量水平的时候,发明了一套方法模型,开始时是MAIC,后来慢慢演变成DMA
    优思学院 2025-03-27 11:47 151浏览
  • 在电子设计中,电磁兼容性(EMC)是确保设备既能抵御外部电磁干扰(EMI),又不会对自身或周围环境产生过量电磁辐射的关键。电容器、电感和磁珠作为三大核心元件,通过不同的机制协同作用,有效抑制电磁干扰。以下是其原理和应用场景的详细解析:1. 电容器:高频噪声的“吸尘器”作用原理:电容器通过“通高频、阻低频”的特性,为高频噪声提供低阻抗路径到地,形成滤波效果。例如,在电源和地之间并联电容,可吸收电源中的高频纹波和瞬态干扰。关键应用场景:电源去耦:在IC电源引脚附近放置0.1μF陶瓷电容,滤除数字电路
    时源芯微 2025-03-27 11:19 163浏览
  • 案例概况在丹麦哥本哈根,西门子工程师们成功完成了一项高安全设施的数据集成项目。他们利用宏集Cogent DataHub软件,将高安全设施内的设备和仪器与远程监控位置连接起来,让技术人员能够在不违反安全规定、不引入未经授权人员的情况下,远程操作所需设备。突破OPC 服务器的远程连接难题该项目最初看似是一个常规的 OPC 应用:目标是将高安全性设施中的冷水机(chiller)设备及其 OPC DA 服务器,与远程监控站的两套 SCADA 系统(作为 OPC DA 客户端)连接起来。然而,在实际实施过
    宏集科技 2025-03-27 13:20 109浏览
  • 汽车导航系统市场及应用环境参照调研机构GII的研究报告中的市场预测,全球汽车导航系统市场预计将于 2030年达到472亿美元的市场规模,而2024年至2030年的年复合成长率则为可观的6.7%。汽车导航系统无疑已成为智能汽车不可或缺的重要功能之一。随着人们在日常生活中对汽车导航功能的日渐依赖,一旦出现定位不准确或地图错误等问题,就可能导致车主开错路线,平白浪费更多行车时间,不仅造成行车不便,甚或可能引发交通事故的发生。有鉴于此,如果想要提供消费者完善的使用者体验,在车辆开发阶段便针对汽车导航功能
    百佳泰测试实验室 2025-03-27 14:51 191浏览
  • 长期以来,智能家居对于大众家庭而言就像空中楼阁一般,华而不实,更有甚者,还将智能家居认定为资本家的营销游戏。商家们举着“智慧家居、智慧办公”的口号,将原本价格亲民、能用几十年的家电器具包装成为了高档商品,而消费者们最终得到的却是家居设备之间缺乏互操作性、不同品牌生态之间互不兼容的碎片化体验。这种早期的生态割裂现象致使消费者们对智能家居兴趣缺失,也造就了“智能家居无用论”的刻板印象。然而,自Matter协议发布之后,“命运的齿轮”开始转动,智能家居中的生态割裂现象与品牌生态之间的隔阂正被基于IP架
    华普微HOPERF 2025-03-27 09:46 111浏览
  • 在智能语音产品的开发过程中,麦克风阵列的选型直接决定了用户体验的优劣。广州唯创电子提供的单麦克风与双麦克风解决方案,为不同场景下的语音交互需求提供了灵活选择。本文将深入解析两种方案的性能差异、适用场景及工程实现要点,为开发者提供系统化的设计决策依据。一、基础参数对比分析维度单麦克风方案双麦克风方案BOM成本¥1.2-2.5元¥4.8-6.5元信噪比(1m)58-62dB65-68dB拾音角度全向360°波束成形±30°功耗8mW@3.3V15mW@3.3V典型响应延迟120ms80ms二、技术原
    广州唯创电子 2025-03-27 09:23 165浏览
  • WT588F02B是广州唯创电子推出的一款高性能语音芯片,广泛应用于智能家电、安防设备、玩具等领域。然而,在实际开发中,用户可能会遇到烧录失败的问题,导致项目进度受阻。本文将从下载连线、文件容量、线路长度三大核心因素出发,深入分析烧录失败的原因并提供系统化的解决方案。一、检查下载器与芯片的物理连接问题表现烧录时提示"连接超时"或"设备未响应",或烧录进度条卡顿后报错。原因解析接口错位:WT588F02B采用SPI/UART双模通信,若下载器引脚定义与芯片引脚未严格对应(如TXD/RXD交叉错误)
    广州唯创电子 2025-03-26 09:05 146浏览
  • ​2025年3月27日​,贞光科技授权代理品牌紫光同芯正式发布新一代汽车安全芯片T97-415E。作为T97-315E的迭代升级产品,该芯片以大容量存储、全球化合规认证、双SPI接口协同为核心突破,直击智能网联汽车"多场景安全并行"与"出口合规"两大行业痛点,助力车企抢占智能驾驶与全球化市场双赛道。行业趋势锚定:三大升级回应智能化浪潮1. 大容量存储:破解车联网多任务瓶颈随着​车机功能泛在化​(数字钥匙、OTA、T-BOX等安全服务集成),传统安全芯片面临存储资源挤占难题。T97-415E创新性
    贞光科技 2025-03-27 13:50 148浏览
  • 在当今竞争激烈的工业环境中,效率和响应速度已成为企业制胜的关键。为了满足这一需求,我们隆重推出宏集Panorama COOX,这是Panorama Suite中首款集成的制造执行系统(MES)产品。这一创新产品将Panorama平台升级为全面的工业4.0解决方案,融合了工业SCADA和MES技术的双重优势,帮助企业实现生产效率和运营能力的全面提升。深度融合SCADA与MES,开启工业新纪元宏集Panorama COOX的诞生,源于我们对创新和卓越运营的不懈追求。通过战略性收购法国知名MES领域专
    宏集科技 2025-03-27 13:22 192浏览
  • 文/陈昊编辑/cc孙聪颖‍2025 年,作为中国实施制造强国战略第一个十年计划的关键里程碑,被赋予了极为重大的意义。两会政府工作报告清晰且坚定地指出,要全力加速新质生产力的发展进程,推动传统产业全方位向高端化、智能化与绿色化转型。基于此,有代表敏锐提议,中国制造应从前沿技术的应用切入,逐步拓展至产业生态的构建,最终延伸到提升用户体验的维度,打出独树一帜、具有鲜明特色的发展牌。正是在这样至关重要的时代背景之下,于 AWE 2025(中国家电及消费电子博览会)这一备受瞩目的舞台上,高端厨房的中国方案
    华尔街科技眼 2025-03-25 16:10 85浏览
  • 在嵌入式语音系统的开发过程中,广州唯创电子推出的WT588系列语音芯片凭借其优异的音质表现和灵活的编程特性,广泛应用于智能终端、工业控制、消费电子等领域。作为该系列芯片的关键状态指示信号,BUSY引脚的设计处理直接影响着系统交互的可靠性和功能拓展性。本文将从电路原理、应用场景、设计策略三个维度,深入解析BUSY引脚的技术特性及其工程实践要点。一、BUSY引脚工作原理与信号特性1.1 电气参数电平标准:输出3.3V TTL电平(与VDD同源)驱动能力:典型值±8mA(可直接驱动LED)响应延迟:语
    广州唯创电子 2025-03-26 09:26 206浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦