光电显示龙头,首推金刚石基超大功率密度封装!

DT半导体材料 2025-02-19 18:50
【DT半导体】获悉,根据瑞丰光电,在传统LED照明领域,散热问题一直是制约性能提升的关键因素。特别是随着LED技术向高光效、高功率方向的快速发展,高功率LED封装技术因其结构和工艺的复杂性,对LED的性能、寿命产生直接影响。而高功率LED在复杂应用场景中,因散热不良导致的光衰加剧、稳定性下降等成为行业亟待解决的难题。
图片
针对传统高功率封装产品痛点,瑞丰光电开创性采用金刚石基板工艺,推出了行业突破性的大功率封装新品——金刚石基超大功率密度封装,满足了如汽车大灯、户外强光照明、舞台灯光等场景对高功率LED的使用需求,为高功率LED的发展应用开拓了更多可能性。
图片



热导率高,散热性能优越
在汽车的大灯等高功率应用场景中,常规采用的陶瓷材料会因散热不佳而出现光衰严重、寿命缩短甚至是烧毁的等情况,瑞丰光电创新采用金刚石材料基板,热导率最高可达1800W/(m·K),是陶瓷材料的10倍,可以实现大功率下亮度持续提升的同时,使 LED 芯片能够在更高的功率下稳定工作 。
图片



单灯尺寸小,光效高
新品提供多种规格选择,单灯最小尺寸做到5*5mm,完美兼容市场主流规格,可直接替换现有方案,有效降低维护成本,满足各种高光效需求的应用场景,尤其适用于如路灯等需要高亮度和长时间照明的场合。
图片



单灯功率大,光学性能佳
在光学性能方面,瑞丰光电通过对金刚石基板封装结构设计,能够大幅度降低光在传播过程中的损耗,单灯功率可实现60W,光通量6500lm/W以上,光线分布更加明亮且均匀,在投影仪等高亮度、高均匀性要求的场景中光学性能表现出色。
图片



先进封装技术,可靠性更高
金刚石材料热膨胀系数小,可减少因温度变化而产生的热应力,防止裂纹或剥离等问题,瑞丰光电金刚石基超大功率密度封装采用的自有先进封装技术,能够有效提升器件的可靠性、稳定性以及使用寿命,这一特性在舞台灯等专业照明场景中尤为重要,可确保设备高强度运行下仍保持优异性能。
图片

创新驱动未来
本次全新产品金刚石基超大功率密度封装的推出,无疑是照明领域的一次重大突破,它为当前的照明应用带来了质的提升,并将为高端照明的应用发展注入新的活力,逐渐在户外照明、汽车照明、无人机照明、投影仪、舞台照明等应用方面展现出巨大的发展潜力。

瑞丰光电
深圳市瑞丰光电子股份有限公司(股票代码:300241)是一家集研发、生产、销售LED及LED应用解决方案的全球知名创新型科技企业。
科技创新、技术领先、产品差异化是瑞丰光电赖以生存的核心竞争力,瑞丰光电陆续布局和推动照明、显示、车用、电气、触显等专业领域发展,并与全球一线品牌建立了深度的战略合作关系。目前,公司将重点在车载照明显示、Mini LED、Micro LED及触显电子纸等新兴领域进行研发与业务布局,提升公司核心竞争力和持续盈利能力。

参考信息本文素材和图片来自瑞丰光电及网络公开信息,本平台发布仅为了传达一种不同观点,不代表对该观点赞同或支持。如果有任何问题,请联系 19045661526(同微信)


2025(第五届)碳基半导体材料与器件产业发展论坛
4月10-12日   浙江宁波

1

论坛背景

Background of the Forum

碳基半导体(包括金刚石、碳化硅、石墨烯和碳纳米管等)因其超宽禁带、高热导率、高载流子迁移率以及优异的化学稳定性等卓越的特性,正在成为解决传统硅基半导体材料逐渐逼近物理极限问题的关键途径。在人工智能、5G/6G通信、新能源汽车等迅猛发展的新兴产业领域表现出广阔的应用前景。尤其是在当前不确定的国际局势和贸易环境背景下,碳基半导体战略意义凸显,成为多国布局的重要赛道。
为此,由DT新材料将举办的2025(第五届)碳基半导体材料与器件产业发展论坛“创新·融合(金刚石&“金刚石+”)”为主题将围绕金刚石以及“金刚石+”半导体的生长、精密加工、键合、器件制造、高效热管理应用等环节中的关键技术和设备,搭建一个汇聚顶尖专家学者、企业家和产业界人士的高水平交流平台,分享与探讨碳基半导体产业趋势、创新成果和应用需求,推动碳基半导体产业上下游合作,助力产业链高质量发展。
图片
扫码了解参会详情

2

论坛信息

Forum Info

论坛主题:创新·融合(金刚石&"金刚石+")
论坛时间:2025年4月10-12日
论坛地点:浙江宁波  
论坛主席:江南,中国科学院宁波材料技术与工程研究所研究员
执行主席:邬苏东,甬江实验室研究员

3

论坛组织

Forum organization

主办单位:DT新材料
联合主办:
中国科学院宁波材料技术与工程研究所功能碳素实验室
甬江实验室
宁波工程学院
协办单位:
宁波盈诺科技孵化有限公司
支持单位:
河北工业大学先进激光技术研究中心
金刚石激光技术及应用协同创新中心
中关村天合宽禁带半导体技术创新联盟
支持媒体:
DT半导体、洞见热管理、Carbontech、DT新材料、DT芯材、化合物半导体、芯师爷

4

论坛设置

Forum Settings

图片

5

核心议题

core subject

**拟定议题,以实际议程为准。欢迎企业和科研单位提供和定制议题方向。

主论坛:碳基半导体的机遇与挑战
(1)新的国际局势与政策导向下的碳基半导体发展趋势研判
(2)AI等未来产业驱动下的碳基半导体的市场需求与前景分析
(3)碳基半导体(金刚石、碳化硅、石墨烯和碳纳米管等)前沿研究进展
(4)碳基半导体器件(金刚石及“金刚石+”)产业化与应用进展
(5)碳基半导体产业投资分析

主题一:金刚石半导体制备与应用探索
(1)大尺寸、低成本金刚石制备技术与产业化推进
(2)高效、低损伤金刚石精密加工技术
(3)金刚石功率器件的热管理解决方案

主题二:“金刚石+”半导体制造与规模化应用
(1)“金刚石+”半导体异质外延生长(金刚石薄膜)
(2)“金刚石+”半导体键合技术
(3)“金刚石+”半导体先进光刻与微纳加工
(4)“金刚石+”半导体先进封装(2.5D/3D集成)
(5)“金刚石+”半导体(SiC、GaN、Ga2O3、AlN、BN)的最新研究进展及其在功率器件、二极管、射频器件、滤波器、热管理等领域应用

主题三:石墨烯&碳纳米管制备以及其在柔性&高速电子设备领域的应用
(1)石墨烯晶圆的大尺寸制备、带隙调控及器件研究
(2)石墨烯在柔性电子和可穿戴设备中的应用
(3)碳纳米管的手性控制与选择性生长
(4)碳纳米管在高速电子设备(高性能计算、通信设备等)中的应用拓展

6

参会注册

Registration

参会代表(/人)
报名且线上缴费¥3000,早鸟价¥2800
学生(/人)
报名且线上缴费¥1500,早鸟价¥1200
注:注册费包含资料费、会议期间餐费等,不包含住宿费、交通费。

7

联系我们

Contact Us

注册缴费、赞助
刘琦
电话:18958383279(微信同号)
邮箱:liuqi@polydt.com

李蕊
电话:13373875075(微信同号)
邮箱:luna@polydt.com

曾瑶
电话:18958254586(微信同号)
邮箱:zengyao@polydt.com

刘明臣
电话:15356019057(微信同号)
邮箱:liumingcheng@polydt.com


报告申请:
汪杨
电话:19045661526(微信同号)
邮箱:wangyang@polydt.com


8

往届回顾

Past Review

点击下面链接查看往届风采:
圆满落幕!500+行业大咖携手CarbonSemi助力碳基半导体产业化进程!第四届碳基半导体材料与器件产业发展论坛,陪伴行业发展
图片

图片

DT半导体材料 聚焦于半导体材料行业的最新动态
评论 (0)
  •         在当今电子设备高度集成的时代,电路保护显得尤为重要。TVS管(瞬态电压抑制二极管)和压敏电阻作为一种高效的电路保护器件,被广泛应用于各种电子设备中,用以吸收突波,抑制瞬态过电压,从而保护后续电路免受损坏。而箝位电压,作为TVS管和压敏电阻的核心参数之一,直接关系到其保护性能的优劣。箝位电压的定义        箝位电压指瞬态保护器件(如TVS二极管、压敏电阻)在遭遇过压时,将电路电压限制在安全范围内的
    广电计量 2025-03-20 14:05 97浏览
  • 流感季急诊室外彻夜排起的长队,手机屏幕里不断闪烁的重症数据,深夜此起彼伏的剧烈咳嗽声——当病毒以更狡猾的姿态席卷全球,守护健康的战争早已从医院前移到每个人的身上。在医学界公认的「72小时黄金预警期」里,可穿戴设备闪烁的光芒正穿透皮肤组织,持续捕捉血氧浓度、心率变异性和体温波动数据。这不是科幻电影的末日警报,而是光电传感器发出的生命预警,当体温监测精度精确到±0.0℃,当动态血氧检测突破运动伪影干扰……科技正在重新定义健康监护的时空边界。从智能手表到耳机,再到智能戒指和智能衣物,这些小巧的设备通过
    艾迈斯欧司朗 2025-03-20 15:45 174浏览
  • 近日,保定飞凌嵌入式技术有限公司(以下简称“飞凌嵌入式”)携手瑞芯微电子股份有限公司(以下简称“瑞芯微”)正式加入2025年全国大学生嵌入式芯片与系统设计竞赛(以下简称“嵌入式大赛”),并在应用赛道中设立专属赛题。本次嵌入式大赛,双方选用基于瑞芯微RK3588芯片设计的ELF 2开发板作为参赛平台,旨在通过此次合作,促进产教融合,共同推动嵌入式系统创新人才的培养。全国大学生嵌入式芯片与系统设计竞赛是一项A类电子设计竞赛,同时也是被教育部列入白名单的赛事,由中国电子学会主办,是学生保研、求职的公认
    飞凌嵌入式 2025-03-20 11:53 91浏览
  • 为有效降低人为疏失导致交通事故发生的发生率,各大汽车制造厂及系统厂近年来持续开发「先进驾驶辅助系统」ADAS, Advanced Driver Assistance Systems。在众多车辆安全辅助系统之中,「紧急刹车辅助系统」功能(AEB, Autonomous Emergency Braking)对于行车安全性的提升便有着相当大的帮助。AEB透过镜头影像模块与毫米波雷达感测前方目标,可在发生碰撞前警示或自动刹车以降低车辆损伤以及乘员伤害。面临的挑战以本次分享的客户个案为例,该车厂客户预计在
    百佳泰测试实验室 2025-03-20 15:07 108浏览
  • 家电“以旧换新”政策的覆盖范围已从传统的八大类家电(冰箱、洗衣机、电视、空调、电脑、热水器、家用灶具、吸油烟机)扩展至各地根据本地特色和需求定制的“8+N”新品类。这一政策的补贴再叠加各大电商平台的优惠,家电销售规模显著增长,消费潜力得到进一步释放。晶尊微方案为升级换代的智能家电提供了高效且稳定的触摸感应和水位检测功能,使得操作更加便捷和可靠!主要体现在:水位检测1健康家电:养生壶、温奶器、加湿器的缺水保护安全2清洁电器:洗地机、扫地机器人的低液位和溢液提醒3宠物家电:宠物饮水机的缺水提醒/满水
    ICMAN 2025-03-20 15:23 151浏览
  • 贞光科技代理的品牌-光颉科技高精密薄膜电阻凭借0.01%的超高精度,在AI服务器电源模块中实现了精确电压分配、优化功率因数和减少热损耗,显著提升系统能效和可靠性。在当今的数字时代,人工智能(AI)服务器已成为数据中心的核心。随着AI应用的激增,服务器的性能和能效需求也在不断提高。电源模块作为服务器的关键组件,其性能直接影响整个系统的效率和可靠性。本文将探讨光颉科技高精密薄膜电阻,特别是其0.01%的精度,如何在AI服务器电源模块中提升能效。电源模块在AI服务器中的重要性电源模块负责将输入电源转换
    贞光科技 2025-03-20 16:55 163浏览
  • 如同任何对我们工作方式的改变,新的工作方式必然会遇到许多必须面对的挑战。如果不解决组织在实施精益六西格玛过程中面临的障碍以及如何克服它们的问题,那么关于精益六西格玛的讨论就不算完整。以下列举了组织在成功实施精益六西格玛时常见的几个障碍,以及克服它们的方法:1)对精益六西格玛方法论缺乏理解。抵触情绪通常源于对精益六西格玛方法论的不了解,以及不相信它能真正发挥作用。这种情况在所有层级的人员中都会出现,包括管理层。虽然教育培训可以帮助改善这一问题,但成功的项目往往是打消疑虑的最佳方式。归根结底,这是一
    优思学院 2025-03-20 12:35 107浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,凭借AS1163独立智能驱动器(SAID)成为中国领先的智能集成系统产品汽车制造商宁波福尔达智能科技股份有限公司(“福尔达”)环境动态照明应用的关键供应商。此次合作标志着汽车技术发展的一个重要时刻,充分展现了AS1163在优化动态照明应用系统成本方面的多功能性和先进性能。该产品支持传感器集成,拥有专为车顶照明设计的超薄外形,并能提升车内照明系统的性能。AS1163是一款先进的智能LED驱动器,能够与开放系统协议(OSP)网络无缝
    艾迈斯欧司朗 2025-03-20 14:26 102浏览
  • 本文内容来自微信公众号【工程师进阶笔记】,以工程师的第一视角分析了飞凌嵌入式OK3506J-S开发板的产品优势,感谢原作者温老师的专业分享。前两周,有一位老朋友联系我,他想找人开发一款数据采集器,用来采集工业现场的设备数据,并且可以根据不同的业务场景,通过不同的接口把这些数据分发出去。我把他提的需求总结了一下,这款产品方案大概有以下功能接口,妥妥地一款工业网关,在网上也能找到很多类似的产品方案,为啥他不直接买来用?再跟朋友深入地聊了一下,他之所以联系我,是因为看到我在公众号介绍过一款由飞凌嵌入式
    飞凌嵌入式 2025-03-20 11:51 125浏览
  • PCIe 5.0应用环境逐步成形,潜在风险却蠢蠢欲动?随着人工智能、云端运算蓬勃发展,系统对于高速数据传输的需求不断上升,PCI Express(PCIe)成为服务器应用最广的传输技术,尤其在高效能运算HPC(High Performance Computing)及AI服务器几乎皆导入了最新的PCIe 5.0规格,使得数据传输的双向吞吐量达到了128GB/s,让这两类的服务器能够发挥最大的效能。不过随着PCIe 5.0的频率达到16GHz,PCB板因为高频而导致讯号衰减加剧的特性,使得厂商面临很
    百佳泰测试实验室 2025-03-20 13:47 105浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦