香港科技大学电子与计算机工程系陈敬教授课题组,在第70届国际电子器件大会(IEEE International Electron Devices Meeting, IEDM 2024)上报告了多项基于宽禁带半导体氮化镓,碳化硅的最新研究进展。研究成果覆盖功率器件技术和新型器件技术:
高速且具备优越开关速度控制能力的3D堆叠式GaN/SiC cascode 功率器件
图1-1:GaN/SiC cascode 器件的3D堆叠封装及其高速开关能力
此外,cascode器件长期受制于其较弱的开关速度控制能力。针对该问题,研究团队首次分析、提出和实验验证了低压器件的CGD是从根本上提升cascode器件开关速度控制能力的关键(图1-2)。从而首次在cascode功率器件上实现了用户乐于使用的通过外加栅极电阻调控开关速度的方法。
图1-2:GaN/SiC开关速度控制方案与实验数据验证。增加低压器件的CGD之后,cascode器件具备通过栅极电阻实现开关速度控制的能力
用于栅极高压保护及光-电同步驱动的全GaN基半导体栅增强型 HEMT
p-GaN栅增强型GaN基功率HEMT在近年来实现了快速发展和初步商业化,但该器件由于缺乏内在的栅极过压保护结构,在使用中困扰于较低的栅极耐压能力和安全栅压上限。针对这一瓶颈,陈敬教授课题组提出采用N型掺杂的GaN帽层作为半导体栅极以取代传统的金属栅极,构建n-GaN/p-GaN/AlGaN/GaN增强型HEMT,具体结构如图2-1所示,其中在有源区沟道上方的n-GaN为本征栅极(IG),有源区之外的外部栅极(XG)连接栅极金属提供栅压。
图2-1:全GaN基半导体栅增强型HEMT的3D结构示意图(左)、主/侧视图(中)及栅极过压保护能力(右)
该器件中,本征栅极和外部栅极实现了去耦合。随着正向栅压的增加、n-GaN逐渐完全耗尽时,本征栅压达到固定的、不随外部栅压变化的钳位电压。基于此原理,n-GaN半导体栅可作为器件自身的栅极保护结构,实现静态400V、瞬态千伏级的栅极耐压,相比传统金属栅器件的耐压能力大幅提升(图2-1)。此外,由于半导体栅极无金属覆盖,有利于紫外光的穿透和在GaN栅极区域中的吸收,因此可利用外部紫外光源作为辅助驱动,实现光-电同步开关,增强沟道调控能力,降低器件导通电阻。
用于储备池计算的宽禁带半导体可重构类神经晶体管
图3-1: 氮化镓可重构晶体管及其工作原理示意图
传统的人工神经网络模型通常需要大量的权重参数和硬件计算资源。以物理储备池计算(Reservoir Computing)为代表的神经网络,利用物理系统固有的非线性特征和动态演化过程作为计算资源,可显著提升系统效率。然而,目前基于电子器件的物理储备池大多受限于单一的非线性响应和短期记忆效应,难以处理不同时间尺度的信号。同时,处理信号物理储备池器件与存储权重的非易失存储器件大多基于不同材料,难以同片集成。
针对这一问题,陈敬教授课题组提出了一种基于氮化镓的可重构晶体管(图3-1)。该器件基于p-GaN/AlGaN/GaN平台,利用p型氮化镓作为沟道材料,结合不同的栅极结构设计,构成易失型和非易失型存储器件,分别作为储备池计算中的储备池层和读出层。其中,易失型器件基于顶栅/介质/浮栅/半导体/背栅的栅极结构,以浮栅作为短期存储电荷的媒介,利用双栅结构分别调节器件的非线性输入输出响应和短期记忆保持时间,实现可重构的物理储备池。非易失型器件基于顶栅/介质/半导体/背栅的栅极结构,以介质/半导体界面的深能级陷阱态作为长期存储电荷的媒介,利用电子和空穴注入,实现了快速权重更新、多态存储和高耐久性。利用该可重构晶体管,进一步构建了一种具有高度适应性的储备池计算系统,实现了在不同时间尺度上的混沌时间序列预测(图3-2)。
2025(第五届)碳基半导体材料与器件产业发展论坛
4月10-12日 浙江宁波
1
论坛背景
Background of the Forum
扫码了解参会详情
2
论坛信息
Forum Info
论坛主题:创新·融合(金刚石&"金刚石+")
论坛时间:2025年4月10-12日
论坛地点:浙江宁波
论坛主席:江南,中国科学院宁波材料技术与工程研究所研究员
3
论坛组织
Forum organization
联合主办:
中国科学院宁波材料技术与工程研究所功能碳素实验室
甬江实验室
宁波工程学院
协办单位:
宁波盈诺科技孵化有限公司
支持单位:
河北工业大学先进激光技术研究中心
金刚石激光技术及应用协同创新中心
中关村天合宽禁带半导体技术创新联盟
支持媒体:
4
论坛设置
Forum Settings
5
核心议题
core subject
**拟定议题,以实际议程为准。欢迎企业和科研单位提供和定制议题方向。
主论坛:碳基半导体的机遇与挑战
(1)新的国际局势与政策导向下的碳基半导体发展趋势研判
(2)AI等未来产业驱动下的碳基半导体的市场需求与前景分析
(3)碳基半导体(金刚石、碳化硅、石墨烯和碳纳米管等)前沿研究进展
(4)碳基半导体器件(金刚石及“金刚石+”)产业化与应用进展
(5)碳基半导体产业投资分析
主题一:金刚石半导体制备与应用探索
(1)大尺寸、低成本金刚石制备技术与产业化推进
(2)高效、低损伤金刚石精密加工技术
(3)金刚石功率器件的热管理解决方案
主题二:“金刚石+”半导体制造与规模化应用
(1)“金刚石+”半导体异质外延生长(金刚石薄膜)
(2)“金刚石+”半导体键合技术
(3)“金刚石+”半导体先进光刻与微纳加工
(4)“金刚石+”半导体先进封装(2.5D/3D集成)
(5)“金刚石+”半导体(SiC、GaN、Ga2O3、AlN、BN)的最新研究进展及其在功率器件、二极管、射频器件、滤波器、热管理等领域应用
主题三:石墨烯&碳纳米管制备以及其在柔性&高速电子设备领域的应用
(1)石墨烯晶圆的大尺寸制备、带隙调控及器件研究
(2)石墨烯在柔性电子和可穿戴设备中的应用
(3)碳纳米管的手性控制与选择性生长
6
参会注册
Registration
报名且线上缴费¥3000,早鸟价¥2800
学生(/人)
报名且线上缴费¥1500,早鸟价¥1200
7
联系我们
Contact Us
刘琦
电话:18958383279(微信同号)
邮箱:liuqi@polydt.com
李蕊
电话:13373875075(微信同号)
邮箱:luna@polydt.com
曾瑶
电话:18958254586(微信同号)
邮箱:zengyao@polydt.com
刘明臣
电话:15356019057(微信同号)
邮箱:liumingcheng@polydt.com
报告申请:
汪杨
电话:19045661526(微信同号)
邮箱:wangyang@polydt.com
8
往届回顾
Past Review