项目经验:TMP100温度传感器设计全过程

21ic电子网 2021-01-29 00:00
出品  21ic论坛  laocuo1142

网站:bbs.21ic.com


TMP100温度传感器最近一个新项目,板子尺寸有限,对传感器功耗要求也高,之前用的插件是RW1820温度传感器,位置不够了,就换成立TMP100贴片式的SOT23-6封装,完整的料号是TMP100AQDBVRQ1,TI出品的。看了一下资料精度±1℃,实际测试差不多2℃的样子,不过一般测温项目够用了。


详细参数:
供电电压:2.7V~5V
接口类型:I2C
分辨率:9 bit to 12 bit
工作温度:-40℃~125℃
工作电流:150uA
操作频率:100 KHz /400KHz/3.4MHz


[size=14.0000pt]你如果需要低功耗的话,直接初始化为9bit,关断模式。关断模式就是采集转换一次温度数据之后,传感器自动进入cut down模式。
[size=13.3333px]uint8 TMP100_init(void)
[size=13.3333px]{
[size=13.3333px]    I2CStart();                             //启动I2C总线
[size=13.3333px]

[size=13.3333px]          I2CWriteByte(slaveaddr);                //发送从器件地址 90 写寄存器
[size=13.3333px]          if(I2CWaitACK()==0)                                 //从地址无响应
[size=13.3333px]          {
[size=13.3333px]                  return 0;
[size=13.3333px]          }                  
[size=13.3333px]          I2CWriteByte(0x01);                            //发送配置寄存器地址0x01
[size=13.3333px]          if(I2CWaitACK()==0)                                 //从地址无响应
[size=13.3333px]          {
[size=13.3333px]                  return 0;
[size=13.3333px]          }
[size=13.3333px]          I2CWriteByte(0x01);                                //写配置寄存器0x81????  0x01  设置为关断模式 读9bit
[size=13.3333px]          if(I2CWaitACK()==0)                                 //从地址无响应
[size=13.3333px]          {
[size=13.3333px]                  return 0;
[size=13.3333px]          }      
[size=13.3333px]          I2CStop();
[size=13.3333px]    return 1;
[size=13.3333px]}
然后每次读就转换一次,这样功耗是非常低的。
[size=13.3333px]uint8 Read_TMP100(void)
[size=13.3333px]{
[size=13.3333px]        volatile uint8 tempH,tempL;
[size=13.3333px]    uint8 i=0;
[size=13.3333px]    uint8 Tmp[2];
[size=13.3333px]     /*--设置温度探头寄存器--*/
[size=13.3333px]        I2CStart();                             //启动I2C总线
[size=13.3333px]

[size=13.3333px]          I2CWriteByte(slaveaddr);                //发送从器件地址 90 写寄存器
[size=13.3333px]          if(I2CWaitACK()==0)                                 //从地址无响应
[size=13.3333px]          {
[size=13.3333px]                  return 0;
[size=13.3333px]          }                  
[size=13.3333px]          I2CWriteByte(0x01);                            //发送配置寄存器地址0x01
[size=13.3333px]          if(I2CWaitACK()==0)                                 //从地址无响应
[size=13.3333px]          {
[size=13.3333px]                  return 0;
[size=13.3333px]          }
[size=13.3333px]          I2CWriteByte(0x81);                                //写配置寄存器0x81????  0x81  设置为读9bit
[size=13.3333px]          if(I2CWaitACK()==0)                                 //从地址无响应
[size=13.3333px]          {
[size=13.3333px]                  return 0;
[size=13.3333px]          }      
[size=13.3333px]          I2CStop();
[size=13.3333px]

[size=13.3333px]  /*--开始读取数据操作--*/
[size=13.3333px]          I2CStart();                             //启动I2C总线        
[size=13.3333px]          //I2CWriteByte(slaveaddr+1);              //发送从器件地址
[size=13.3333px]    I2CWriteByte(slaveaddr);                  //发送从器件地址
[size=13.3333px]          if(I2CWaitACK()==0)                                 //从地址无响应
[size=13.3333px]          {
[size=13.3333px]                  return 0;
[size=13.3333px]          }
[size=13.3333px]    I2CWriteByte(0x00);                      //读取温度寄存器
[size=13.3333px]          if(I2CWaitACK()==0)                                 //从地址无响应
[size=13.3333px]          {
[size=13.3333px]                  return 0;
[size=13.3333px]          }
[size=13.3333px]                        
[size=13.3333px]///**********************等待转换完毕**************************/         
[size=13.3333px]        DelayMCU_ms(40);
[size=13.3333px]         
[size=13.3333px]/***********************读取温度***************************/
[size=13.3333px]    I2CStart();
[size=13.3333px]   
[size=13.3333px]    I2CWriteByte(slaveaddr+1);                      //读取温度寄存器
[size=13.3333px]          if(I2CWaitACK()==0)                                 //从地址无响应
[size=13.3333px]          {
[size=13.3333px]                  return 0;
[size=13.3333px]          }
[size=13.3333px]          tempH = I2CReadByte();                                //读取温度高字节        
[size=13.3333px]          I2CSendAck();
[size=13.3333px]

[size=13.3333px]          tempL = I2CReadByte();                                //读取低字节        
[size=13.3333px]          I2CSendNoAck();         
[size=13.3333px]   
[size=13.3333px]          I2CStop();
[size=13.3333px]//    RealTemp = (int16)(((uint16)tempH<<8)+tempL);
[size=13.3333px]    RealTemp = (int16)(((uint16)tempH<<3)+((tempL>>7)*4));
[size=13.3333px]          return 1;
[size=13.3333px]}


9bit采集的话,主要就是0.5℃为一个采集间隔,按着这个传感器的精度,其实也差不多了。 

  [size=18.6667px]

待机功耗确实非常低,官方标称的0.1uA,确实是的,不需要另外加电源控制了。

[size=10.5000pt]

[size=10.5000pt]

温度寄存器和温度计算方法。


对应的计算公式:
温度值= T11×27 + T10×26 +T9×25 +T8×24+T7×23+T6×22+T5×21+
T4×20+T3×2-1+T2×2-2+T1×2-3+T0×2-4

选择12 Bits 位精度时,有效位为T11~T0,最低位从T0开始,故分辨率为0.0625℃

选择11 Bits 位精度时,有效位为T11~T1,最低位从T1开始,故分辨率为0.125℃

选择10 Bits 位精度时,有效位为T11~T2,最低位从T2开始,故分辨率为0. 25℃

选择9 Bits 位精度时,有效位为T11~T3,最低位从T3开始,故分辨率为0.5℃

我这个项目使用的是9位数据,这样的转换时间是最短的。


实际测试我都是延时40ms,去采集12bit的温度,也是可以正常采集的。

IIC的程序我就暂时不贴了,如果有需要可以留言。现在流行IOT产品越来越多了,温度是一个常规的参数,这个传感器也是一个好选择。

在电路上,只需要在通讯线上接上拉电阻就行了,如下图:


本文系21ic论坛网友laocuo1142原创



21ic电子网 即时传播最新电子科技信息,汇聚业界精英精彩视点。
评论 (0)
  • 一、智能家居的痛点与创新机遇随着城市化进程加速,现代家庭正面临两大核心挑战:情感陪伴缺失:超60%的双职工家庭存在“亲子陪伴真空期”,儿童独自居家场景增加;操作复杂度攀升:智能设备功能迭代导致用户学习成本陡增,超40%用户因操作困难放弃高阶功能。而WTR096-16S录音语音芯片方案,通过“语音交互+智能录音”双核驱动,不仅解决设备易用性问题,更构建起家庭成员间的全天候情感纽带。二、WTR096-16S方案的核心技术突破1. 高保真语音交互系统动态情绪语音库:支持8种语气模板(温柔提醒/紧急告警
    广州唯创电子 2025-04-28 09:24 188浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 152浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 213浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 211浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 301浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 219浏览
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 108浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 214浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 204浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 181浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 182浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 247浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 157浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦