3000字,搞懂BUCK电路

硬件笔记本 2025-02-13 08:02

图片点击上方名片关注了解更多图片



摘要

DC-DC BUCK,是硬件工程师工作中使用频率非常高的电路,可以这么说,只要板子不是迷你型的,十有八九都有DC-DC。因此,对它的了解与学习是重中之重,也是考验一个硬件工程师对MOS管,电感,电容这些基本元器件的特性与使用方法的掌握程度。

本文将详细对DC-DC BUCK拓扑,进一步到DCDC芯片实际框图的各部分原理与参数选择等进行较为详细的说明,逻辑推论主要以工程推论为主,公式计算为辅,对实践设计有学习意义。

本文主要做知识记录与学习分享,部分图片源于网上。

BUCK原理

如下图是同步BUCK的拓扑:

1、当Q1导通,Q2关闭,SW端电压为输入电压VIN,VIN给电感L1充电,电感电流增加,VIN=VL+VOUT,此时电感电压左正右负。电流方向为图示蓝色回路。

2、当Q1关闭,Q2打开,由于电感电流不能突变,电流按照下图红线路径形成回路,给负载供电,此时电感电流下降。电感电压左负右正。

根据伏秒法则等推导,同步BUCK得出一个比较重要的公式:

VIN*D=VOUT

简单地说,占空比跟输入输出的电压有直接关系,相对而言,如果输出电压越低,占空比就越低,理解起来就是,因为输出电压低,所以需要打开上MOS管对电感充电的时间就更少了!

(这里要注意,这个只是在完美条件下测出来的理论值,实际会因为有损耗等情况,与理论值有差别)

图片

根据上图拓扑,得出下图波形

a、当Q1打开,Q2关闭,Vsw为高,IQ1增加,IQ2为零,电感电流增加。

b‘、当Q1关闭,Q2打开,Vsw为低,IQ1为零,IQ2减小,电感电流减小。

c、整个稳态过程,电感电流不断增加减少。

d、我们常将上管打开的时间称为Ton,其关闭的时间为Toff。两者相加是一个周期。

图片

这里放一个有意思的仿真波形,绿色为电感左端SW电压信号,红色为输出电压信号。

当没有输出电容,但是有负载的时候,可以看到输出电压的波动随着SW开关的变化,SW为高时,VIN给电感充能,输出电压增加;SW为低时,电感消耗自身能量,输出电压变低。

图片

DC-DC芯片框图

BUCK拓扑图,比较简单,我们结合实际DC-DC芯片框图,进行较为深入的说明。

在DC-DC芯片框图中,还是有那两个MOS管,电感,电容,多了一些 Driver,Controller等逻辑电路。

简单的说,就是利用电感储能,电流不能突变的原理,通过PWM控制 HS Driver和LS Driver进一步控制高边MOS和低边MOS的打开和关闭,调节输出的功能。

图片

按照功能,分为逻辑驱动、功率转换、负载、电压采样和反馈补偿。

图片

自举电容

描述

CBOOT,也叫CBST,中文意思是自举电容。

作用

维持High-side MOS的开启状态。(维持这两个字很关键)

工作过程

1、初始状态,LS导通,HS关闭(HS的 PWM输入为低),SW电压为0V,VCC通过二极管对CBST充电至VCC电压(红色路径)。

2、当PWM为高,HG电压升高过程中,HS开始导通,SW电压上升,由于CBST两端存在压差,会同步抬高BST的电压,而driver内部HG和BST连通,HG电压也会跟随BST升高(蓝色电流路径),从而维持HG-SW的压差足够高,保持HS的导通。

图片

选型

最常见的是0.1uF。

1、自举电容不能太小,至少要保证要大于高边MOS所需的导通能量+漏电流+高边Driver消耗电流+自举电容本身的漏电流。

2、自举电容不能太大,如果太大,在对自举电容充电的时候,该周期内无法对自举电容充满,导致上电压偏小,无法使高边MOS导通,输出异常。

设计角度上,耐压需要超过芯片内部VCC电压即可,为DCDC芯片内部LDO输出电压,常见是3.3V。也有的芯片内部不做LDO,需要外部接入VCC的。

输出电感

DCR,这是电感的直流电阻,这个值越小,在电感上的损耗就越少。但是有的芯片会使用电感的DCR进行电流检测,如果有这个功能,这个值就不是越小越好了。

有意思的是,如果DCR比较大,这部分损耗会以电感温度上升的形式表达,这样又会降低电感的感值,增大纹波电流和纹波电压。

饱和电流,通常指电感量下降百分之30的时候所对应的DC电流。

温升电流,通常指电感升温40度时的电流值。

逻辑上电感有个最小值,要大于一个量才能够包容得了纹波电流。

根据电感的特性,电感越大,储能能力越强,对电流的抑制作用越明显,所以纹波会更小,但是动态响应降低。同时,一般来说,电感越大,尺寸越大,DCR越大,电感的损耗增加。

图片

流过电感的电流由交流分量和直流分量组成,交流分量频率跟开关频率一样,会通过电容流入到地,产生响应的输出纹波电压跟ESR相关。

选择电感时要确保饱和电流Isat大于电感电流峰值Ipeak,避免电感饱和,感值下降造成MOS和电感损坏。

图片

其中r是电流纹波率,一般选择0.3~0.5左右。

工作频率

增加频率,会缩短一个周期的时间,纹波电流将减小。

输出电容和纹波

还是这张波形图,没有输出电容,有负载的情况。简单理解,电源纹波产生的根本原因,就是上MOS管开关的过程中,电感电流的波动,进一步导致输出电压的波动。

图片

作用:

储能,滤除电源噪声

选型:

耐压、容值、ESR等参数。

耐压一般需要降额百分之八十;

理论上容值越大,效果越好,但是不同的电容,对于相同频率的阻抗是不一样的,如下图。电容一般选择混搭的方式,即大容值的固态电解电容跟小容值的MLCC组合,以实现全频段都有较低的阻抗。

其他参数相同的情况下,输出电容的ESR越小,输出纹波就越小。从工程应用的角度去理解,就是输出是有纹波电流的,如果ESR越大,在电容这段变化的电压越大,表现出来是纹波的一部分。

图片

前馈电容

前馈电容,为下图中的C7,并联在FB分压电阻的上端。

前馈电容的作用机制,就是利用电容两端电压不能突变的原理,将VOUT的微弱变化及时迅速的反馈到芯片FB引脚,所以其目的是增加芯片的瞬态响应,可以优化纹波。

图片

损耗

开关损耗

开关损耗主要在高边MOS,在开启和关断的过程中,出现电压和电流的交叠区,此时消耗功率:

图片

换句话说就是,MOS管打开是需要时间的,虽然说这个过程对于我们普遍的认知来说很快,但是工程上不能忽略。

图片

开关频率越高,相同时间段内转换的次数就越多,所以开关频率和开关损耗成正比。

而对于下MOS,这个就有点意思了,需要捋一下过程,首先上MOS打开,给电感充能,然后上MOS关闭,进入dead time,此时由下MOS管的体二极管进行续流,dead time时间结束后,下MOS管打开,由于此时下MOS管打开的过程中,VDS电压非常低,可以认为下MOS管的开关损耗非常少。

导通损耗

上下MOS在导通的时候都会存在导通损耗,这个参数跟Rdson有关,因为MOS在导通时不是绝对的零通过电阻,只要有电阻,通过电流,就会有消耗。

图片

这里需要注意,在稳态连续导通模式的时候,电感充电流和放电流的量是一样的,所以上下管的通过电流一样,所以HS和LS导通损耗比跟PWM的占空比有关。如果占空比D为百分之五十,可以认为上下管的导通损耗一样。

但是大部分D都小于百分之五十,所以我们说下管的导通损耗比上管的大。同时,上管主要为开关损耗。关注公众号硬件笔记本

dead time

为了不让上下MOS出现同时导通,将VCC短路到地的情况,两个MOS开关之间存在dead time,下管关闭然后经过dead time的时间,再去打开上管。此时下管的体二极管在dead time时间内续流产生的损耗以及反向恢复时产生的损耗。

图片

体二极管存在导通压降和电流,这部分会产生损耗:

还有反向恢复损耗:

图片

电感损耗

a、线圈损耗

由电感直流电阻DCR产生的,输出电流经过DCR,损耗以热量的形式表达。

图片

线圈损耗可以用如下公式计算:

图片

b、磁芯损耗

磁芯损耗跟磁芯材料相关,很难计算,需要联系电感厂商获取。一般来说,频率越高,磁损越大。

损耗总结

在网上找到一个比较好的图。

图片

图片

开关损耗跟开关频率和栅极电荷Qg有关,而导通损耗跟Rdson有关。

一般来说

High Side MOS 开关损耗大,导通损耗小

Low Side MOS开关损耗小,导通损耗大。

总结

DC-DC BUCK电路,研究透了发现非常有意思,一开始看山是山,然后看山不是山,最后看山又是山,相同的东西,给自己的感觉完全不一样。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/weixin_42107954/article/details/131000253
写在最后
都说硬件工程师越老越吃香,这句话也告诉我们硬件也是需要积累的,王工从事硬件多年,也会不定期分享技术好文,感兴趣的同学可以加微信,或后台回复“加群”,管理员拉你加入同行技术交流群。


推荐阅读点击图片直接进入
图片

图片

图片
投稿/招聘/推广/宣传/技术咨询 请加微信:woniu26a

声明:

声明:原创文章,转载请注明出处。本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。

推荐阅读

  • 电路设计-电路分析

  • EMC相关文章

  • 电子元器件

硬件笔记本 一点一滴,厚积薄发。
评论 (0)
  • 你知道精益管理中的“看板”真正的意思吗?在很多人眼中,它不过是车间墙上的一块卡片、一张单子,甚至只是个用来控制物料的工具。但如果你读过大野耐一的《丰田生产方式》,你就会发现,看板的意义远不止于此。它其实是丰田精益思想的核心之一,是让工厂动起来的“神经系统”。这篇文章,我们就带你一起从这本书出发,重新认识“看板”的深层含义。一、使“看板”和台车结合使用  所谓“看板”就是指纸卡片。“看板”的重要作用之一,就是连接生产现场上道工序和下道工序的信息工具。  “看板”是“准时化”生产的重要手段,它总是要
    优思学院 2025-04-14 15:02 108浏览
  • 展会名称:2025成都国际工业博览会(简称:成都工博会)展会日期:4月23 -25日展会地址:西部国际博览城展位号:15H-E010科士威传动将展示智能制造较新技术及全套解决方案。 2025年4月23-25日,中国西部国际博览城将迎来一场工业领域的年度盛会——2025成都国际工业博览会。这场以“创链新工业,共碳新未来”为主题的展会上,来自全球的600+ 家参展企业将齐聚一堂,共同展示智能制造产业链中的关键产品及解决方案,助力制造业向数字化、网络化、智能化转型。科士威传动将受邀参展。&n
    科士威传动 2025-04-14 17:55 60浏览
  • 一、智能语音播报技术演进与市场需求随着人工智能技术的快速发展,TTS(Text-to-Speech)技术在商业场景中的应用呈现爆发式增长。在零售领域,智能收款机的语音播报功能已成为提升服务效率和用户体验的关键模块。WT3000T8作为新一代高性能语音合成芯片,凭借其优异的处理能力和灵活的功能配置,正在为收款机智能化升级提供核心技术支持。二、WT3000T8芯片技术特性解析硬件架构优势采用32位高性能处理器(主频240MHz),支持实时语音合成与多任务处理QFN32封装(4x4mm)实现小型化设计
    广州唯创电子 2025-04-15 08:53 67浏览
  • 一、磁场发生设备‌电磁铁‌:由铁芯和线圈组成,通过调节电流大小可产生3T以下的磁场,广泛应用于工业及实验室场景(如电磁起重机)。‌亥姆霍兹线圈‌:由一对平行共轴线圈组成,可在线圈间产生均匀磁场(几高斯至几百高斯),适用于物理实验中的磁场效应研究。‌螺线管‌:通过螺旋线圈产生长圆柱形均匀磁场,电流与磁场呈线性关系,常用于磁性材料研究及电子束聚焦。‌超导磁体‌:采用超导材料线圈,在低温下可产生3-20T的强磁场,用于核磁共振研究等高精度科研领域。‌多极电磁铁‌:支持四极、六极、八极等多极磁场,适用于
    锦正茂科技 2025-04-14 13:29 61浏览
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 45浏览
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 123浏览
  • 软瓦格化 RISC-V 处理器集群可加速设计并降低风险作者:John Min John Min是Arteris的客户成功副总裁。他拥有丰富的架构专业知识,能够成功管理可定制和标准处理器在功耗、尺寸和性能方面的设计权衡。他的背景包括利用 ARC、MIPS、x86 和定制媒体处理器来设计 CPU SoC,尤其擅长基于微处理器的 SoC。RISC-V 指令集架构 (ISA) 以其强大的功能、灵活性、低采用成本和开源基础而闻名,正在经历各个细分市场的快速增长。这种多功能 ISA 支持汽车、航空航天、国防
    ArterisIP 2025-04-14 10:52 95浏览
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 42浏览
  • 在制造业或任何高度依赖产品质量的行业里,QA(质量保证)经理和QC(质量控制)经理,几乎是最容易被外界混淆的一对角色。两者的分工虽清晰,但职责和目标往往高度交叉。因此,当我们谈到“谁更有可能升任质量总监”时,这并不是一个简单的职位比较问题,而更像是对两种思维方式、职业路径和管理视角的深度考察。QC经理,问题终结者QC经理的世界,是充满数据、样本和判定标准的世界。他们是产品出厂前的最后一道防线,手里握着的是批次报告、不合格品记录、纠正措施流程……QC经理更像是一位“问题终结者”,目标是把不合格扼杀
    优思学院 2025-04-14 12:09 68浏览
  • 亥姆霍兹线圈的应用领域‌物理学研究‌:在原子物理中,用于研究塞曼效应;在磁学研究中,用于测试磁性材料的磁滞回线等特性;还可用于研究电子荷质比等实验‌。‌工程与技术领域‌:用于电子设备校准和测试,提供标准磁场环境;在大型加速器中用于磁场校准;用于电磁干扰模拟实验,测试电子设备在不同磁场干扰下的性能‌。‌生物医学领域‌:研究生物磁场效应,如探索磁场对生物细胞的影响;在生物医学工程基础研究中,提供可控磁场环境‌。‌其他应用‌:作为磁场发生装置产生标准磁场;用于地球磁场的抵消与补偿、地磁环境模拟;还可用
    锦正茂科技 2025-04-14 10:41 73浏览
  •   无人装备作战协同仿真系统软件:科技的关键支撑   无人装备作战协同仿真系统软件,作为一款综合性仿真平台,主要用于模拟无人机、无人车、无人艇等无人装备在复杂作战环境中的协同作战能力、任务规划、指挥控制以及性能评估。该系统通过搭建虚拟战场环境,支持多种无人装备协同作战仿真,为作战指挥、装备研发、战术训练和作战效能评估,提供科学依据。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   核心功能   虚拟战
    华盛恒辉l58ll334744 2025-04-14 17:24 62浏览
  •   高空 SAR 目标智能成像系统软件:多领域应用的前沿利器   高空 SAR(合成孔径雷达)目标智能成像系统软件,专门针对卫星、无人机等高空平台搭载的 SAR传感器数据,融合人工智能与图像处理技术,打造出的高效目标检测、识别及成像系统。此软件借助智能算法,显著提升 SAR图像分辨率、目标特征提取能力以及实时处理效率,为军事侦察、灾害监测、资源勘探等领域,提供关键技术支撑。   应用案例系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合
    华盛恒辉l58ll334744 2025-04-14 16:09 139浏览
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 67浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 32浏览
  • 时源芯微 专业EMC解决方案提供商  为EMC创造可能(适用于高频时钟电路,提升EMC性能与信号稳定性)一、设计目标抑制电源噪声:阻断高频干扰(如DC-DC开关噪声)传入晶振电源。降低时钟抖动:确保晶振输出信号纯净,减少相位噪声。通过EMC测试:减少晶振谐波辐射(如30MHz~1GHz频段)。二、滤波电路架构典型拓扑:电源输入 → 磁珠(FB) → 大电容(C1) + 高频电容(C2) → 晶振VDD1. 磁珠(Ferrite Bead)选型阻抗特性:在目标频段(如100MHz~1GH
    时源芯微 2025-04-14 14:53 80浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦