手写数字识别任务之数据处理

云深之无迹 2021-01-27 00:00

舍不得我的GPU

这次横向逐步进行优化


在前文中,我们直接用API导入了数据,但是现实中,搬砖环境千变万化,我们总是要拿自己的数据的处理的:

  • 读入数据

  • 划分数据集

  • 生成批次数据

  • 训练样本集乱序

  • 校验数据有效性

import paddleimport paddle.fluid as fluidfrom paddle.fluid.dygraph.nn import Linearimport numpy as npimport osimport gzipimport jsonimport random

导入一些工具库

数据集的储存结构


data包含三个元素的列表:train_setval_set、 test_set

  • train_set(训练集):包含50000条手写数字图片和对应的标签,用于确定模型参数。

  • val_set(验证集):包含10000条手写数字图片和对应的标签,用于调节模型超参数(如多个网络结构、正则化权重的最优选择)。

  • test_set(测试集):包含10000条手写数字图片和对应的标签,用于估计应用效果(没有在模型中应用过的数据,更贴近模型在真实场景应用的效果)。

train_set包含两个元素的列表:train_imagestrain_labels

  • train_images:[5000, 784]的二维列表,包含5000张图片。每张图片用一个长度为784的向量表示,内容是28*28尺寸的像素灰度值(黑白图片)。

  • train_labels:[5000, ]的列表,表示这些图片对应的分类标签,即0-9之间的一个数字。


# 声明数据集文件位置datafile = './work/mnist.json.gz'print('loading mnist dataset from {} ......'.format(datafile))# 加载json数据文件data = json.load(gzip.open(datafile))print('mnist dataset load done')# 读取到的数据区分训练集,验证集,测试集train_set, val_set, eval_set = data
# 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLSIMG_ROWS = 28IMG_COLS = 28
# 打印数据信息imgs, labels = train_set[0], train_set[1]print("训练数据集数量: ", len(imgs))
# 观察验证集数量imgs, labels = val_set[0], val_set[1]print("验证数据集数量: ", len(imgs))
# 观察测试集数量imgs, labels = val= eval_set[0], eval_set[1]print("测试数据集数量: ", len(imgs))

读取以及拆分的代码



  • 训练样本乱序: 先将样本按顺序进行编号,建立ID集合index_list。然后将index_list乱序,最后按乱序后的顺序读取数据。


说明:

通过大量实验发现,模型对最后出现的数据印象更加深刻。训练数据导入后,越接近模型训练结束,最后几个批次数据对模型参数的影响越大。为了避免模型记忆影响训练效果,需要进行样本乱序操作。


  • 生成批次数据: 先设置合理的batch_size,再将数据转变成符合模型输入要求的np.array格式返回。同时,在返回数据时将Python生成器设置为yield模式,以减少内存占用。

在执行如上两个操作之前,需要先将数据处理代码封装成load_data函数,方便后续调用。load_data有三种模型:trainvalideval,分为对应返回的数据是训练集、验证集、测试集。

imgs, labels = train_set[0], train_set[1]print("训练数据集数量: ", len(imgs))# 获得数据集长度imgs_length = len(imgs)# 定义数据集每个数据的序号,根据序号读取数据index_list = list(range(imgs_length))# 读入数据时用到的批次大小BATCHSIZE = 100
# 随机打乱训练数据的索引序号random.shuffle(index_list)
# 定义数据生成器,返回批次数据def data_generator():
imgs_list = [] labels_list = [] for i in index_list: # 将数据处理成希望的格式,比如类型为float32,shape为[1, 28, 28] img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32') label = np.reshape(labels[i], [1]).astype('float32') imgs_list.append(img) labels_list.append(label) if len(imgs_list) == BATCHSIZE: # 获得一个batchsize的数据,并返回 yield np.array(imgs_list), np.array(labels_list) # 清空数据读取列表 imgs_list = [] labels_list = []
# 如果剩余数据的数目小于BATCHSIZE, # 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch if len(imgs_list) > 0: yield np.array(imgs_list), np.array(labels_list) return data_generator

# 声明数据读取函数,从训练集中读取数据train_loader = data_generator# 以迭代的形式读取数据for batch_id, data in enumerate(train_loader()): image_data, label_data = data if batch_id == 0: # 打印数据shape和类型 print("打印第一个batch数据的维度:") print("图像维度: {}, 标签维度: {}".format(image_data.shape, label_data.shape)) break



在实际应用中,原始数据可能存在标注不准确、数据杂乱或格式不统一等情况。因此在完成数据处理流程后,还需要进行数据校验,一般有两种方式:

  • 机器校验:加入一些校验和清理数据的操作。

  • 人工校验:先打印数据输出结果,观察是否是设置的格式。再从训练的结果验证数据处理和读取的有效性。


 imgs_length = len(imgs)
assert len(imgs) == len(labels), \ "length of train_imgs({}) should be the same as train_labels({})".format(len(imgs), len(label))


# 声明数据读取函数,从训练集中读取数据train_loader = data_generator# 以迭代的形式读取数据for batch_id, data in enumerate(train_loader()): image_data, label_data = data if batch_id == 0: # 打印数据shape和类型 print("打印第一个batch数据的维度,以及数据的类型:") print("图像维度: {}, 标签维度: {}, 图像数据类型: {}, 标签数据类型: {}".format(image_data.shape, label_data.shape, type(image_data), type(label_data))) break

再放一个人工校验的:

人工校验是指打印数据输出结果,观察是否是预期的格式。实现数据处理和加载函数后,我们可以调用它读取一次数据,观察数据的shape和类型是否与函数中设置的一致。

def load_data(mode='train'): datafile = './work/mnist.json.gz' print('loading mnist dataset from {} ......'.format(datafile)) # 加载json数据文件 data = json.load(gzip.open(datafile)) print('mnist dataset load done')
# 读取到的数据区分训练集,验证集,测试集 train_set, val_set, eval_set = data if mode=='train': # 获得训练数据集 imgs, labels = train_set[0], train_set[1] elif mode=='valid': # 获得验证数据集 imgs, labels = val_set[0], val_set[1] elif mode=='eval': # 获得测试数据集 imgs, labels = eval_set[0], eval_set[1] else: raise Exception("mode can only be one of ['train', 'valid', 'eval']") print("训练数据集数量: ", len(imgs))
# 校验数据 imgs_length = len(imgs)
assert len(imgs) == len(labels), \ "length of train_imgs({}) should be the same as train_labels({})".format(len(imgs), len(label))
# 获得数据集长度 imgs_length = len(imgs)
# 定义数据集每个数据的序号,根据序号读取数据 index_list = list(range(imgs_length)) # 读入数据时用到的批次大小 BATCHSIZE = 100
# 定义数据生成器 def data_generator(): if mode == 'train': # 训练模式下打乱数据 random.shuffle(index_list) imgs_list = [] labels_list = [] for i in index_list: # 将数据处理成希望的格式,比如类型为float32,shape为[1, 28, 28] img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32') label = np.reshape(labels[i], [1]).astype('float32') imgs_list.append(img) labels_list.append(label) if len(imgs_list) == BATCHSIZE: # 获得一个batchsize的数据,并返回 yield np.array(imgs_list), np.array(labels_list) # 清空数据读取列表 imgs_list = [] labels_list = []
# 如果剩余数据的数目小于BATCHSIZE, # 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch if len(imgs_list) > 0: yield np.array(imgs_list), np.array(labels_list) return data_generator

怕流程太复杂,那就写一个打包的函数就是这样~

#数据处理部分之后的代码,数据读取的部分调用Load_data函数# 定义网络结构,同上一节所使用的网络结构class MNIST(fluid.dygraph.Layer): def __init__(self): super(MNIST, self).__init__() self.fc = Linear(input_dim=784, output_dim=1, act=None)
def forward(self, inputs): inputs = fluid.layers.reshape(inputs, (-1, 784)) outputs = self.fc(inputs) return outputs
# 训练配置,并启动训练过程with fluid.dygraph.guard(): model = MNIST() model.train() #调用加载数据的函数 train_loader = load_data('train') optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.001, parameter_list=model.parameters()) EPOCH_NUM = 10 for epoch_id in range(EPOCH_NUM): for batch_id, data in enumerate(train_loader()): #准备数据,变得更加简洁 image_data, label_data = data image = fluid.dygraph.to_variable(image_data) label = fluid.dygraph.to_variable(label_data)
#前向计算的过程 predict = model(image)
#计算损失,取一个批次样本损失的平均值 loss = fluid.layers.square_error_cost(predict, label) avg_loss = fluid.layers.mean(loss)
#每训练了200批次的数据,打印下当前Loss的情况 if batch_id % 200 == 0: print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))
#后向传播,更新参数的过程 avg_loss.backward() optimizer.minimize(avg_loss) model.clear_gradients()
#保存模型参数 fluid.save_dygraph(model.state_dict(), 'mnist')

定义一个神经网络层,然后开始训练

因为代码没有更改,所以.一样的lose

同步和异步的数据读取方式


上面提到的数据读取采用的是同步数据读取方式。对于样本量较大、数据读取较慢的场景,建议采用异步数据读取方式。

异步读取数据时,数据读取和模型训练并行执行,从而加快了数据读取速度,牺牲一小部分内存换取数据读取效率的提升


  • 同步数据读取:数据读取与模型训练串行。当模型需要数据时,才运行数据读取函数获得当前批次的数据。在读取数据期间,模型一直等待数据读取结束才进行训练,数据读取速度相对较慢。

  • 异步数据读取:数据读取和模型训练并行。读取到的数据不断的放入缓存区,无需等待模型训练就可以启动下一轮数据读取。当模型训练完一个批次后,不用等待数据读取过程,直接从缓存区获得下一批次数据进行训练,从而加快了数据读取速度。

  • 异步队列:数据读取和模型训练交互的仓库,二者均可以从仓库中读取数据,它的存在使得两者的工作节奏可以解耦。

# 定义数据读取后存放的位置,CPU或者GPU,这里使用CPU# place = fluid.CUDAPlace(0) 时,数据读取到GPU上place = fluid.CPUPlace()with fluid.dygraph.guard(place): # 声明数据加载函数,使用训练模式 train_loader = load_data(mode='train') # 定义DataLoader对象用于加载Python生成器产生的数据 data_loader = fluid.io.DataLoader.from_generator(capacity=5, return_list=True) # 设置数据生成器 data_loader.set_batch_generator(train_loader, places=place) # 迭代的读取数据并打印数据的形状 for i, data in enumerate(data_loader): image_data, label_data = data print(i, image_data.shape, label_data.shape) if i>=5: break

飞桨的异步读取是这样的

与同步数据读取相比,异步数据读取仅增加了三行代码,如下所示。

place = fluid.CPUPlace()

# 设置读取的数据是放在CPU还是GPU上。

data_loader = fluid.io.DataLoader.from_generator(capacity=5, return_list=True)

# 创建一个DataLoader对象用于加载Python生成器产生的数据。数据会由Python线程预先读取,并异步送入一个队列中。

data_loader.set_batch_generator(train_loader, place)

# 用创建的DataLoader对象设置一个数据生成器set_batch_generator,输入的参数是一个Python数据生成器train_loader和服务器资源类型place(标明CPU还是GPU)

fluid.io.DataLoader.from_generator参数名称和含义如下:

  • feed_list:仅在PaddlePaddle静态图中使用,动态图中设置为“None”,本教程默认使用动态图的建模方式;

  • capacity:表示在DataLoader中维护的队列容量,如果读取数据的速度很快,建议设置为更大的值;

  • use_double_buffer:是一个布尔型的参数,设置为“True”时,Dataloader会预先异步读取下一个batch的数据并放到缓存区;

  • iterable:表示创建的Dataloader对象是否是可迭代的,一般设置为“True”;

  • return_list:在动态图模式下需要设置为“True”。

异步数据读取并训练的完整案例代码如下

with fluid.dygraph.guard(): model = MNIST() model.train() #调用加载数据的函数 train_loader = load_data('train') # 创建异步数据读取器 place = fluid.CPUPlace() data_loader = fluid.io.DataLoader.from_generator(capacity=5, return_list=True) data_loader.set_batch_generator(train_loader, places=place)  optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.001, parameter_list=model.parameters()) EPOCH_NUM = 3 for epoch_id in range(EPOCH_NUM): for batch_id, data in enumerate(data_loader): image_data, label_data = data image = fluid.dygraph.to_variable(image_data) label = fluid.dygraph.to_variable(label_data)  predict = model(image)  loss = fluid.layers.square_error_cost(predict, label) avg_loss = fluid.layers.mean(loss)  if batch_id % 200 == 0: print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))  avg_loss.backward() optimizer.minimize(avg_loss) model.clear_gradients()
fluid.save_dygraph(model.state_dict(), 'mnist')
评论 (0)
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 107浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 193浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 227浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 146浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 168浏览
  • 一、智能家居的痛点与创新机遇随着城市化进程加速,现代家庭正面临两大核心挑战:情感陪伴缺失:超60%的双职工家庭存在“亲子陪伴真空期”,儿童独自居家场景增加;操作复杂度攀升:智能设备功能迭代导致用户学习成本陡增,超40%用户因操作困难放弃高阶功能。而WTR096-16S录音语音芯片方案,通过“语音交互+智能录音”双核驱动,不仅解决设备易用性问题,更构建起家庭成员间的全天候情感纽带。二、WTR096-16S方案的核心技术突破1. 高保真语音交互系统动态情绪语音库:支持8种语气模板(温柔提醒/紧急告警
    广州唯创电子 2025-04-28 09:24 185浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 171浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 173浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 171浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 232浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 202浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 196浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 137浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦