在半导体技术飞速发展的今天,大尺寸晶圆的高效制备成为推动行业进步的关键因素。而在众多半导体材料中,金刚石凭借其超宽禁带、高击穿电场、高热导率等优异电学性质,被视为 “终极半导体”,在电真空器件、高频高功率固态电子器件领域极具应用潜力。
然而,金刚石的高硬度和生长速率低、尺寸小等问题,限制了其在大尺寸晶圆制备中的应用。今天,我们就一同深入探究大尺寸金刚石晶圆复制技术的发展现状与未来趋势。
在半导体领域,晶圆复制通常借助同质外延生长后切割,或基于异质衬底进行异质外延这两种方式实现批量生产。而半导体切割技术作为晶圆复制的关键环节,对晶圆及衬底表面质量影响重大。目前,常见的半导体切割技术各有千秋:
切割原理示意图
智能切削流程示意图
激光隐形切割示意图
目前,金刚石晶圆制备主要有基于异质衬底的异质外延生长和基于拼接等方法的同质外延生长这两种途径。而基于同质外延的金刚石晶圆复制技术多借助离子注入技术,此外,激光隐形切割技术在金刚石复制方面也有了初步成果。这两种复制技术有效规避了传统激光切割高损耗的问题7。
离子注入剥离金刚石流程图
激光剥离金刚石:原理与激光隐形切割半导体类似,利用飞秒激光在金刚石内部形成石墨改质层,再通过退火、电化学刻蚀等步骤实现剥离。近年来,飞秒激光诱导金刚石石墨化的研究逐渐兴起,已有研究成功在金刚石内部制造出石墨微结构,并实现了单晶金刚石的剥离。国内北京科技大学团队利用飞秒激光在金刚石较深位置形成受损层,有望实现大尺寸金刚石晶圆的剥离,该方法能避免其他工艺的复杂问题,为大尺寸金刚石复制提供了新方向。
综合现阶段半导体晶圆复制技术与金刚石复制技术的发展情况,我们可以对大尺寸金刚石晶圆复制技术的未来发展方向进行展望。
由于金刚石的超高硬度,多数常规复制技术难以适用于它,而离子注入剥离和激光剥离技术成为处理超硬材料的有效手段。但离子注入对环境要求严格、加工时间长,现阶段无法实现高效率稳定生产;
大尺寸金刚石晶圆复制技术的发展虽面临挑战,但前景广阔。随着研究的深入和技术的突破,我们有理由相信,未来金刚石在半导体领域将发挥更大的价值,为科技发展注入新的活力。
扫码了解参会详情
报告申请:
汪杨
电话:19045661526(微信同号)
邮箱:wangyang@polydt.com
刘琦
电话:18958383279(微信同号)
邮箱:liuqi@polydt.com
李蕊
电话:13373875075(微信同号)
邮箱:luna@polydt.com
曾瑶
电话:18958254586(微信同号)
邮箱:zengyao@polydt.com
刘明臣
电话:15356019057(微信同号)
邮箱:liumingcheng@polydt.com
免责声明 | 部分素材源自doi:10.11868/j.issn.1005-5053.2023.000172及网络公开信息,版权归原作者所有。本平台发布仅为了传达一种不同观点,不代表对该观点赞同或支持。如涉侵权,请联系我们处理。