大尺寸金刚石晶圆复制技术:现状与未来

原创 DT半导体材料 2025-02-05 18:52

在半导体技术飞速发展的今天,大尺寸晶圆的高效制备成为推动行业进步的关键因素。而在众多半导体材料中,金刚石凭借其超宽禁带、高击穿电场、高热导率等优异电学性质,被视为 “终极半导体”,在电真空器件、高频高功率固态电子器件领域极具应用潜力。

然而,金刚石的高硬度和生长速率低、尺寸小等问题,限制了其在大尺寸晶圆制备中的应用。今天,我们就一同深入探究大尺寸金刚石晶圆复制技术的发展现状与未来趋势。

   常规半导体复制技术大盘点

在半导体领域,晶圆复制通常借助同质外延生长后切割,或基于异质衬底进行异质外延这两种方式实现批量生产。而半导体切割技术作为晶圆复制的关键环节,对晶圆及衬底表面质量影响重大。目前,常见的半导体切割技术各有千秋:

  1. 线切割技术:分为游离磨料多线切割和固结金刚石多线切割。前者利用多根高速运动的切割线带动切割液中的磨料切削材料,虽可多片同时生产,但材料损耗高达 40%,且切割液回收困难、污染环境;后者则是通过固结在切割线上的金刚石磨粒进行切割,切片效率高、污染小,却容易损伤晶圆。

    切割原理示意图


  2. Smart-Cut 技术:该技术通过向材料注入大剂量氢离子形成受损层,再经晶圆键合、退火、抛光等步骤获取晶圆。它能生产多种异质晶圆,对晶圆损伤小、生产的晶圆质量高,但对材料和实验环境要求苛刻,生产稳定性欠佳。

    智能切削流程示意图


  3. 激光隐形切割技术:利用可透射波长激光在材料内部聚焦形成改质层,随后使材料分离并加工表面。其加工速度快、精度高、稳定性好,几乎无材料损耗,能有效解决普通激光切割的诸多问题,在大尺寸金刚石切割领域颇具发展潜力。

    激光隐形切割示意图


   金刚石晶圆复制技术的探索之路

目前,金刚石晶圆制备主要有基于异质衬底的异质外延生长和基于拼接等方法的同质外延生长这两种途径。而基于同质外延的金刚石晶圆复制技术多借助离子注入技术,此外,激光隐形切割技术在金刚石复制方面也有了初步成果。这两种复制技术有效规避了传统激光切割高损耗的问题7。

  1. 离子注入剥离金刚石:1992 年,Parikh 等人首次提出金刚石剥离技术,通过离子注入、退火和刻蚀等处理,成功完成了小尺寸金刚石的剥离。此后,该技术不断改进,如调整外延生长厚度、采用电化学刻蚀等实现定向剥离。
    离子注入时,离子在金刚石晶体中形成受损层的过程遵循射程理论。研究发现,存在临界剂量和缺陷密度阈值,达到这些条件,受损层才能形成可刻蚀的石墨层实现剥离。目前,离子注入剥离技术在大尺寸、超薄金刚石制备方面取得了一定进展,还能降低衬底表面粗糙度,实现衬底重复利用。但该技术需要高能离子注入,设备成本高、注入面积受限,产业化推广面临挑战。

    离子注入剥离金刚石流程图


  2. 激光剥离金刚石:原理与激光隐形切割半导体类似,利用飞秒激光在金刚石内部形成石墨改质层,再通过退火、电化学刻蚀等步骤实现剥离。近年来,飞秒激光诱导金刚石石墨化的研究逐渐兴起,已有研究成功在金刚石内部制造出石墨微结构,并实现了单晶金刚石的剥离。国内北京科技大学团队利用飞秒激光在金刚石较深位置形成受损层,有望实现大尺寸金刚石晶圆的剥离,该方法能避免其他工艺的复杂问题,为大尺寸金刚石复制提供了新方向。


   未来展望:激光剥离技术有望成主流

综合现阶段半导体晶圆复制技术与金刚石复制技术的发展情况,我们可以对大尺寸金刚石晶圆复制技术的未来发展方向进行展望。

  • 由于金刚石的超高硬度,多数常规复制技术难以适用于它,而离子注入剥离和激光剥离技术成为处理超硬材料的有效手段。但离子注入对环境要求严格、加工时间长,现阶段无法实现高效率稳定生产;

  • 激光剥离技术不仅能切割超硬的金刚石半导体材料,还具备高精度、高质量、低损耗等优势。虽然目前激光剥离在金刚石领域尚处于起步阶段,作用机制和剥离工艺有待完善,但随着技术的不断创新,它有望成为大尺寸金刚石晶圆复制的主流技术,为金刚石在各个领域的广泛应用提供有力支撑。

大尺寸金刚石晶圆复制技术的发展虽面临挑战,但前景广阔。随着研究的深入和技术的突破,我们有理由相信,未来金刚石在半导体领域将发挥更大的价值,为科技发展注入新的活力。


   2025(第五届)碳基半导体材料与器件产业发展论坛

2025(第五届)碳基半导体材料与器件产业发展论坛(CarbonSemi 2025)将在2025年4月10-12日于宁波召开。

碳基半导体(包括金刚石、碳化硅、石墨烯和碳纳米管等)因其超宽禁带、高热导率、高载流子迁移率以及优异的化学稳定性等卓越的特性,正在成为解决传统硅基半导体材料逐渐逼近物理极限问题的关键途径。在人工智能、5G/6G通信、新能源汽车等迅猛发展的新兴产业领域表现出广阔的应用前景。尤其是在当前不确定的国际局势和贸易环境背景下,碳基半导体战略意义凸显,成为多国布局的重要赛道。

扫码了解参会详情

为此,由DT新材料将举办的第五届碳基半导体材料与器件产业发展论坛“创新·融合(金刚石&“金刚石+”)”为主题将围绕金刚石以及“金刚石+”半导体的生长、精密加工、键合、器件制造、高效热管理应用等环节中的关键技术和设备,搭建一个汇聚顶尖专家学者、企业家和产业界人士的高水平交流平台,分享与探讨碳基半导体产业趋势、创新成果和应用需求,推动碳基半导体产业上下游合作,助力产业链高质量发展。


报告申请:

汪杨

电话:19045661526(微信同号)

邮箱:wangyang@polydt.com


注册缴费、赞助

刘琦

电话:18958383279(微信同号)

邮箱:liuqi@polydt.com


李蕊

电话:13373875075(微信同号)

邮箱:luna@polydt.com


曾瑶

电话:18958254586(微信同号)

邮箱:zengyao@polydt.com

刘明臣

电话:15356019057(微信同号)

邮箱:liumingcheng@polydt.com



免责声明 | 部分素材源自doi:10.11868/j.issn.1005-5053.2023.000172及网络公开信息,版权归原作者所有。本平台发布仅为了传达一种不同观点,不代表对该观点赞同或支持。如涉侵权,请联系我们处理。


DT半导体材料 聚焦于半导体材料行业的最新动态
评论 (0)
  •         在当今电子设备高度集成的时代,电路保护显得尤为重要。TVS管(瞬态电压抑制二极管)和压敏电阻作为一种高效的电路保护器件,被广泛应用于各种电子设备中,用以吸收突波,抑制瞬态过电压,从而保护后续电路免受损坏。而箝位电压,作为TVS管和压敏电阻的核心参数之一,直接关系到其保护性能的优劣。箝位电压的定义        箝位电压指瞬态保护器件(如TVS二极管、压敏电阻)在遭遇过压时,将电路电压限制在安全范围内的
    广电计量 2025-03-20 14:05 74浏览
  • 流感季急诊室外彻夜排起的长队,手机屏幕里不断闪烁的重症数据,深夜此起彼伏的剧烈咳嗽声——当病毒以更狡猾的姿态席卷全球,守护健康的战争早已从医院前移到每个人的身上。在医学界公认的「72小时黄金预警期」里,可穿戴设备闪烁的光芒正穿透皮肤组织,持续捕捉血氧浓度、心率变异性和体温波动数据。这不是科幻电影的末日警报,而是光电传感器发出的生命预警,当体温监测精度精确到±0.0℃,当动态血氧检测突破运动伪影干扰……科技正在重新定义健康监护的时空边界。从智能手表到耳机,再到智能戒指和智能衣物,这些小巧的设备通过
    艾迈斯欧司朗 2025-03-20 15:45 130浏览
  • 本文内容来自微信公众号【工程师进阶笔记】,以工程师的第一视角分析了飞凌嵌入式OK3506J-S开发板的产品优势,感谢原作者温老师的专业分享。前两周,有一位老朋友联系我,他想找人开发一款数据采集器,用来采集工业现场的设备数据,并且可以根据不同的业务场景,通过不同的接口把这些数据分发出去。我把他提的需求总结了一下,这款产品方案大概有以下功能接口,妥妥地一款工业网关,在网上也能找到很多类似的产品方案,为啥他不直接买来用?再跟朋友深入地聊了一下,他之所以联系我,是因为看到我在公众号介绍过一款由飞凌嵌入式
    飞凌嵌入式 2025-03-20 11:51 104浏览
  • 在电子制造领域,PCB(印刷电路板)的使用寿命直接决定了产品的长期稳定性和可靠性。捷多邦作为全球领先的PCB制造商,始终将质量放在首位,致力于为客户提供高可靠性、高性能的PCB解决方案。以下是捷多邦如何确保PCB使用寿命超过20年的核心技术与优势。 1. ​高品质原材料:从源头保障耐用性捷多邦采用国际认证的优质基材,如FR4、高频材料和高TG板材,确保PCB在高温、高湿等极端环境下的稳定性。通过严格的原材料筛选和入库检验,捷多邦从源头控制质量,避免因材料缺陷导致的失效问题。 
    捷多邦 2025-03-20 11:22 93浏览
  • 为有效降低人为疏失导致交通事故发生的发生率,各大汽车制造厂及系统厂近年来持续开发「先进驾驶辅助系统」ADAS, Advanced Driver Assistance Systems。在众多车辆安全辅助系统之中,「紧急刹车辅助系统」功能(AEB, Autonomous Emergency Braking)对于行车安全性的提升便有着相当大的帮助。AEB透过镜头影像模块与毫米波雷达感测前方目标,可在发生碰撞前警示或自动刹车以降低车辆损伤以及乘员伤害。面临的挑战以本次分享的客户个案为例,该车厂客户预计在
    百佳泰测试实验室 2025-03-20 15:07 74浏览
  • 4月8-11日,第91届中国国际医疗器械博览会(CMEF)将在国家会展中心(上海)举办。这场全球瞩目的医疗科技盛宴以“创新科技,智领未来”为主题,旨在全方位展示医疗科技的最新成果,与来自全球的行业同仁一道,为全球医疗健康领域带来一场科技与商贸交融的产业“盛宴”。飞凌嵌入式作为专业的嵌入式技术解决方案提供商,一直致力于为医疗器械行业提供丰富的、高可靠性的嵌入式硬件主控解决方案。届时,飞凌嵌入式将为来自全球的观众带来适用于IVD、医疗影像、生命体征监测等医疗设备的嵌入式板卡、显控一体屏产品以及多款动
    飞凌嵌入式 2025-03-20 11:46 33浏览
  • 家电“以旧换新”政策的覆盖范围已从传统的八大类家电(冰箱、洗衣机、电视、空调、电脑、热水器、家用灶具、吸油烟机)扩展至各地根据本地特色和需求定制的“8+N”新品类。这一政策的补贴再叠加各大电商平台的优惠,家电销售规模显著增长,消费潜力得到进一步释放。晶尊微方案为升级换代的智能家电提供了高效且稳定的触摸感应和水位检测功能,使得操作更加便捷和可靠!主要体现在:水位检测1健康家电:养生壶、温奶器、加湿器的缺水保护安全2清洁电器:洗地机、扫地机器人的低液位和溢液提醒3宠物家电:宠物饮水机的缺水提醒/满水
    ICMAN 2025-03-20 15:23 108浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,凭借AS1163独立智能驱动器(SAID)成为中国领先的智能集成系统产品汽车制造商宁波福尔达智能科技股份有限公司(“福尔达”)环境动态照明应用的关键供应商。此次合作标志着汽车技术发展的一个重要时刻,充分展现了AS1163在优化动态照明应用系统成本方面的多功能性和先进性能。该产品支持传感器集成,拥有专为车顶照明设计的超薄外形,并能提升车内照明系统的性能。AS1163是一款先进的智能LED驱动器,能够与开放系统协议(OSP)网络无缝
    艾迈斯欧司朗 2025-03-20 14:26 78浏览
  • 贞光科技代理的品牌-光颉科技高精密薄膜电阻凭借0.01%的超高精度,在AI服务器电源模块中实现了精确电压分配、优化功率因数和减少热损耗,显著提升系统能效和可靠性。在当今的数字时代,人工智能(AI)服务器已成为数据中心的核心。随着AI应用的激增,服务器的性能和能效需求也在不断提高。电源模块作为服务器的关键组件,其性能直接影响整个系统的效率和可靠性。本文将探讨光颉科技高精密薄膜电阻,特别是其0.01%的精度,如何在AI服务器电源模块中提升能效。电源模块在AI服务器中的重要性电源模块负责将输入电源转换
    贞光科技 2025-03-20 16:55 115浏览
  • PCIe 5.0应用环境逐步成形,潜在风险却蠢蠢欲动?随着人工智能、云端运算蓬勃发展,系统对于高速数据传输的需求不断上升,PCI Express(PCIe)成为服务器应用最广的传输技术,尤其在高效能运算HPC(High Performance Computing)及AI服务器几乎皆导入了最新的PCIe 5.0规格,使得数据传输的双向吞吐量达到了128GB/s,让这两类的服务器能够发挥最大的效能。不过随着PCIe 5.0的频率达到16GHz,PCB板因为高频而导致讯号衰减加剧的特性,使得厂商面临很
    百佳泰测试实验室 2025-03-20 13:47 74浏览
  • 近日,保定飞凌嵌入式技术有限公司(以下简称“飞凌嵌入式”)携手瑞芯微电子股份有限公司(以下简称“瑞芯微”)正式加入2025年全国大学生嵌入式芯片与系统设计竞赛(以下简称“嵌入式大赛”),并在应用赛道中设立专属赛题。本次嵌入式大赛,双方选用基于瑞芯微RK3588芯片设计的ELF 2开发板作为参赛平台,旨在通过此次合作,促进产教融合,共同推动嵌入式系统创新人才的培养。全国大学生嵌入式芯片与系统设计竞赛是一项A类电子设计竞赛,同时也是被教育部列入白名单的赛事,由中国电子学会主办,是学生保研、求职的公认
    飞凌嵌入式 2025-03-20 11:53 65浏览
  • 如同任何对我们工作方式的改变,新的工作方式必然会遇到许多必须面对的挑战。如果不解决组织在实施精益六西格玛过程中面临的障碍以及如何克服它们的问题,那么关于精益六西格玛的讨论就不算完整。以下列举了组织在成功实施精益六西格玛时常见的几个障碍,以及克服它们的方法:1)对精益六西格玛方法论缺乏理解。抵触情绪通常源于对精益六西格玛方法论的不了解,以及不相信它能真正发挥作用。这种情况在所有层级的人员中都会出现,包括管理层。虽然教育培训可以帮助改善这一问题,但成功的项目往往是打消疑虑的最佳方式。归根结底,这是一
    优思学院 2025-03-20 12:35 78浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦