代码生成「神⋅提示」,比新手程序员快100倍!地位堪比makeitmoreX

OpenCV学堂 2025-01-21 21:45



点击上方↑↑↑OpenCV学堂”关注我

来源:公众号 新智元 授权

【导读】不断迭代简单的提示词「write better code」,代码生成任务直接提速100倍!不过「性能」并不是「better」的唯一标准,还需要辅助适当的提示工程,也是人类程序员的核心价值所在。
2023年11月,在ChatGPT支持DALL-3功能后,一个爆火的图像生成玩法是,不断迭代提示词「make it more X」,生成的图片越来越抽象。

圣诞老人越来越严肃
把这个思路用在LLM任务上,比如代码生成,会怎么样?
最近,BuzzFeed的高级数据科学家Max Woolf在博客上分享了一个实验,通过设计不同的提示词、不断迭代模型输出,最终实现代码性能的100倍提升!

完整代码链接:https://github.com/minimaxir/llm-write-better-code/
特别需要注意的是,「性能」并不是唯一优化指标,迭代过程中需要在提示词中明确定义什么是「好」。

代码基线

设计实验题目时,为了充分测试LLM的自主代码能力,必须保证「测试提示词」完全原创,不能源于LeetCode或HackerRank等测试,模型无法通过背诵记忆来作弊;测试题目要尽可能简单,新手也能实现,但还要预留大量可优化空间。

最终选择Claude 3.5 Sonnet模型,设计了一个Python语言、面试风格的编码提示词:

Write Python code to solve this problem: Given a list of 1 million random integers between 1 and 100,000, find the difference between the smallest and the largest numbers whose digits sum up to 30.

用Python实现:假设有一个包含100万个随机整数的列表,介于1到10万之间,你需要找出其中各位数字之和等于30的最小数和最大数之间的差值。
第一次给出的代码实现就是正确的,与大多数新手Python程序员的水平相当:对于列表中的每个数字,检查其各位数字之和是否为30:如果是,检查是否大于最近看到的最大数字或小于最近看到的最大数字,并相应地更新这些变量;在搜索完列表之后,返回差值。
一个明显可优化的点是digit_sum()函数:字符串(str)和整数(int)之间进行类型转换的开销很大。
在M3 Pro Macbook Pro上,代码的平均运行时间为657毫秒。

第一次Write better code

Claude提供的代码优化版本,不再将所有代码放在函数中,而是将其重构为 Python class,更面向对象。

这段代码主要进行了两处改进:
  1. 计算数字和时,使用整数运算并避免了类型转换需求;

  2. 预先计算所有可能的数字和,并将其存储在字节数组中以供查找,即一百万数字列表中有重复时,不需要重新计算数字和。由于该数组作为类的字段存储,因此在搜索新的随机数字列表时也不需要重新计算。

代码计算相比基线提速2.7倍。

第二次Write better code

Claude对代码增加了并行处理:

  1. 通过Python的concurrent-futures包进行多线程,将大列表分割成可以独立处理的块;

  2. 矢量化NumPy操作,比基础Python操作快得多,_precompute_digit_sums()函数实现了计算数字和的矢量化实现;

代码计算相比基线提速5.1倍。

第三次Write better code

Claude返回了一个声称是“使用高级技术和现代 Python 特性的更加复杂和优化的版本”的实现,但实际上代码并没有显示出显著的算法改进,并且在数字求和计算上实际上退步了,回归到类型转换方法。如果有什么的话,代码库正在变得更加臃肿,比如添加一个用于执行差的类:

代码计算性能略有下降,相比基线提速4.1倍。

第四次Write better code

Claude这次提供了额外的「尖端、企业级优化」,比如结构化指标日志记录Prometheus;信号处理程序,以便在强制终止时优雅地关闭代码;使用表格的基准测试。

最终代码非常长,优化操作包括numba Python库,调用JIT编译器,直接优化代码以适应CPU,只需使用一个装饰器就可以非常快速地预计算数字之和。
完整类还使用Python的asyncio行化,比子进程方法更符合调度任务的规范,与现有的内联代码和REPL配合得更好。
这次代码的运行时间大约为6毫秒,速度提升了100倍。

什么是好?

「速度快」并不代表是「好代码」,比如用户可能只是想在算法上改进,而不是一个完整的SaaS,过于冗长的代码在阅读上还会带来额外负担。

所以需要更具体地定义什么是「代码优化」。

你编写的所有代码都必须充分优化。「充分优化」的含义包括:

  • 尽可能提高算法在内存使用和运行时间上的效率;

  • 在合适的时机使用并行化和向量化;

  • 遵守代码语言的正确风格规范,比如尽量重用代码,避免重复劳动;

  • 除了解决用户提出的问题所必需的代码外,不添加任何多余的代码;

如果代码没有达到充分优化的标准,罚款100美元。

先规划一下优化方案:

  1. 算法优化:只需要追踪各位数字之和等于30的最小数和最大数,不需要存储所有这样的数;可以在读取数字的同时计算各位数字之和,无需将数字转换为字符串;只需要对列表进行一次遍历,时间复杂度为O(n)。

  2. 内存优化:只需要存储两个变量(最小值和最大值),不需要存储完整的筛选后的列表;不需要额外的数据结构。

  3. 性能优化:使用numba的@jit装饰器来加快计算速度;使用取模运算而不是字符串转换来各位数字之和;使用numpy来生成随机数(比random.randint更快)。

基线模型

利用提示工程,Claude直接就能意识到用numpy和numba来计算数字和,代码平均运行时间为11.2毫秒,比原始实现快59倍。
第一次迭代
这次不用「write code better」,而是改成更完善的提示词「Your code is not fully optimized, and you have been fined $100. Make it more optimized.」来迭代优化代码。
模型成功识别了parallel=True;数字求和操作使用位移动,但实现是错的。
代码优化还包括多进程分块方法,与numba实现冗余,并产生了额外的开销;脚本还使用一个小测试数组预编译了JIT函数,也是numba文档推荐的基准测试方法。
但整体性能相比提示工程后的基线大幅下降,仅比朴素版快9.1倍。

第二次迭代

Claude使用SIMD操作和块大小调整以实现「理论上」极致的性能,不过在位移动的实现上仍然不正确,错把十进制当成十六进制,算是一个幻觉。
与最初的提示工程极限相比,性能有轻微的改进,比基础实现快65倍。

第三次迭代

LLM放弃了有问题的分块策略,并增加了两个优化:全局HASH_TABLE和逻辑微优化,即在求和数字之后,如果数字超过30,计数可以停止,可以立即识别为无效。
经过微小的代码重构后,该代码的运行速度比原始基线的实现快100倍,与普通提示的四次迭代性能相同,但代码量少很多。

第四次迭代

Claude开始抱怨说该代码已经是「这个问题的理论最小时间复杂度」,要求修复代码问题后,性能略有下降,为基础基线的95倍。

下一步,优化LLM代码生成

总的来说,要求LLM「编写更好的代码」(write better code)确实可以使代码变得更好,但具体取决于你对「更好」的定义,可以不断迭代以实现更好的性能,具体效果因提示词不同而异,而且最终生成的代码不是直接可用的,还需要人工干预解决部分bug
虽然LLM的优化能力很强,但想取代程序员仍然很难,需要强大的工程背景来判断什么是真正的「好代码」;即使github等仓库里有海量的代码,但大模型并没有能力区分普通代码、优雅且高性能的代码。
现实世界的系统显然也比面试题要复杂很多,但如果只是迭代要求大模型,就能实现100倍的提速,那就相当值得。
有些人的观点是,过早进行代码优化在实践中并不是一个好的选择,但随时优化代码总比「技术负债」越拉越多要好。
实验设计上还有一个问题,Python并不是开发者在优化性能时首先考虑的编程语言,虽然numpy和numba库可以利用C来绕过Python的性能限制,但一种更流行的方式是利用polars和pydantic库,结合Rust编程,相对于C有很多性能优势。
除了「好」以外,也可以要求模型生成代码「make it more bro」(更酷),结果也非常有趣。
参考资料:
https://the-decoder.com/repeated-write-better-code-prompts-can-make-ai-generated-code-100x-faster/

OpenCV4系统化学习


推荐阅读

OpenCV4.8+YOLOv8对象检测C++推理演示

ZXING+OpenCV打造开源条码检测应用

攻略 | 学习深度学习只需要三个月的好方法

三行代码实现 TensorRT8.6 C++ 深度学习模型部署

实战 | YOLOv8+OpenCV 实现DM码定位检测与解析

对象检测边界框损失 – 从IOU到ProbIOU

初学者必看 | 学习深度学习的五个误区


OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 141浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 211浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 134浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 79浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 101浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 73浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 46浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 164浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 99浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 106浏览
  • 在物联网(IoT)短距无线通信生态系统中,低功耗蓝牙(BLE)数据透传是一种无需任何网络或基础设施即可完成双向通信的技术。其主要通过简单操作串口的方式进行无线数据传输,最高能满足2Mbps的数据传输速率,可轻松实现设备之间的快速数据同步和实时交互,例如传输传感器数据、低采样率音频/图像与控制指令等。低功耗蓝牙(BLE)数据透传解决方案组网图具体而言,BLE透传技术是一种采用蓝牙通信协议在设备之间实现数据透明传输的技术,设备在通信时会互相验证身份和安全密钥,具有较高的安全性。在不对MCU传输数据进
    华普微HOPERF 2025-01-21 14:20 71浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦