IQ调制信号必须用IQ解调吗?

Keysight射频测试资料分 2025-01-20 06:52
在数字接收机中,合路信号携带幅度和相位 (I/Q)信息。到达接收端,输入信号和本振混频得到两路信号。任意一路设为0相位,另一路有90度相移。我们再次强调两路是独立的和正交的,互不干扰。这些就是基本的方法,把含有相位信息的矢量信号分解到I/Q正交两路信号。

解调过程中接收机必须完成信号载波恢,才能正确解出I/Q信息。

本振频率应跟踪发射信号载波的频率与相位,即需要进行载波同步。

输入信号和同相本振与90º相移的本振相乘进行下变频。当本振与被解调信号同频同相时,输出差频及和频分量。

当输入已调信号为

M (t) = I(t) cosωCt + Q(t) sinωCt

则 I/Q两路输出分别为

x1(t) = M(t) x 2cosωCt = 2[ I(t) cosωCt + Q(t) sinωCt ] cosωCt
= I(t) + I(t) cos2ωCt + Q(t) sin2ωCt
x2(t) = M (t) x 2sinωCt = Q(t) + Q(t) sin2ωCt + I(t) cos2ωCt

这时使用合适带宽的低通滤波器滤除2次谐波后,就可以选出频率较低的I(t)与 Q(t)调制信号。接下来就是对恢复的解调信号进行取样判决等处理,再进行并/串逆变换就可获得解调数据。从公式中可以看到只要保证I/Q正交,解调后的I/Q分量就不会相互干扰。

矢量调制和数字调制概况

我们先回顾一下矢量调制和数字调制。特别注意,虽然调制器和解调器两个术语含有硬件的意思,但是基于软件的矢量信号分析,实际上是基于DSP软件在执行调制/ 解调的。

什么是数字调制?

数字调制是无线、卫星和地面通信行业中使用的一个术语,指数字状态由载波相对相位和/或幅度表示的一种调制。虽然我们讨论的是数字调制,但是应记住这种调制并不是数字的,而真正是模拟的。调制是按照调制( 基带) 信号的幅度变化成比例地改变载波的幅度、频率或相位。在数字调制中,基带调制信号是数字式的,而调制过程不是数字的。

在数字调制中,信息包含在载波的相对相位、频率或幅度。

基于具体的应用,数字调制可以同时或单独改变幅度、频率和相位。这类调制可以通过传统的模拟调制方案,例如幅度调制(AM)、频率调制(FM) 或相位调制(PM) 来完成。

不过在实际系统中,通常使用矢量调制( 又称为复数调制或I-Q调制) 作为替代。矢量调制是一种非常强大的调制方案,因为它可生成任意的载波相位和幅度。在这种调制方案中,基带数字信息被分离成两个独立的分量: I ( 同相) 和Q ( 正交) 分量。这些I 和Q 分量随后组合形成基带调制信号。I 和Q分量最重要的特性是它们是独立的分量( 正交)。在下面的讨论中你将进一步了解 I 和 Q分量,以及数字系统使用它们的原因。

IQ调制原理

数字调制IQ图

理解和查看数字调制的简单方法是使用上图所示的 IQ或矢量图在大多数数字通信系统中,载波频率是固定的,因此只需考虑相位和幅度。未经调制的载波作为相位和频率参考,根据调制信号与载波的关系来解释调制信号。相位和幅度可以作为 IQ平面中的虚线点在极坐标图或矢量坐标图中表示。参见上图。I 代表同相位( 相位参考) 分量,Q 代表正交( 与相位相差90 °) 分量。你还可以将同相载波的某具体幅度与正交载波的某具体幅度做矢量加法运算,来表示这个点。这就是 IQ调制的原理。

将载波放入到 I-Q 平面预先确定的某个位置上,然后发射已编码信息。每个位置或状态( 或某些系统中状态间的转换) 代表某一个可在接收机上被解码的比特码型。状态或符号在每个符号选择计时瞬间( 接收机转换信号时) 在IQ平面的映射称为星座图。参见下图。

一个符号号代表一组数字数据比特; 它们是所代表的数字消息的代号。每个符号号包含的比特数即每符号号比特数(bpsym) 由调制格式决定。例如,二进制相移键控(BPSK) 使用1 bpsym,正交相移键控(QPSK) 使用2 bpsym,而8 相移键控(8PSK) 使用3 bpsym。

理论上,星座图的每个状态位置都应当显示为单个的点。但由于系统会受到了各种损伤和噪声的影响,会引起这些状态发生扩散( 每个状态周围有分散的点呈现)。此图显示了 16 QAM格式(16 正交幅度度调制) 的星座图或状态图; 注意,此时有16 个可能的状态位置。该格式使用4 比特数据串, 编码为单个幅度度/ 相位状态或符号号。为了产生这一调制格式,基于被传输的代码,I 和Q载波都需采用4 个不同的幅度度电平。

星座图中的每个位置或状态代表一个具体的比特码型( 符号号 ) 和符号号时间

在数字调制中,信号在有限数量的符号或状态中移动。载波在星座图各点间移动的速率称为符号率。使用的星座状态越多,给定比特率所需的符号率就越低。符号率十分重要因为它代表了传输信号时所需的带宽。符号号率越低,传输所需的带宽就越小。例如,前面提到过的16QAM 格式使用每符号号 4比特的速率。如果无线传输速率为16 Mbps,则符号率= 16 (Mbps) 除以 4比特即 4 MHz。此时提供的符号号率是比特率的四分之一和一个更高效的传输带宽 ( 4 MHz 相对16 MHz)。关于数字调制的更多信息,参见本应用指南结尾处的其它资源。

IQ调制

在数字通信中,IQ调制将已编码的数字I和Q基带信息放入载波中。参见下图。IQ调制生成信号的I和Q分量; 从根本上讲,它是直角坐标—极坐标转换的硬件或软件实现。

IQ调制接受 I 和Q基带信号作为输入,并将它们与相同的本地振荡器 (LO) 混合。注意,这个可能是数字( 软件) LO。下面,I 和 Q 均会上变频到射频载波频率。I 幅度度信息调制载波生成同相分量。Q幅度度信息调制90° ( 直角) 相移的载波生成正交分量。这两种正交调制载波信号相加生成复合 I-Q调制载波信号。IQ调制的主要优势是可以容易地将独立的信号分量合并为单个复合信号,随后同样容易地再将这个复合信号分解为独立的分量部分。

以 90° 分离的信号彼此之间呈直角或正交关系。I 和 Q 信号的正交关系意味着这两个信号是真正独立的,它们是同一信号的两个独立分量。虽然Q 输入的变化肯定会改变复合输出信号,但不会对I 分量造成任何影响。同样地, I 输入的变化也不会影响到Q信号。

IQ解调

如下图所示,IQ解调是上图所示的IQ调制的镜像。IQ解调从复合 IQ调制输入信号中恢复原始的 I和Q基带信号。

IQ解调( 或正交检测)

解调过程的第一步是将接收机 LO锁相至发射机载频。为了正确地恢复 I 和Q基带分量必须要把接收机 LO 锁相至发射机载波( 或混频器 LO)。随后,IQ调制载波与未相移的 LO 和相移90° 的 LO 混合,生成原始的I 和Q基带信号或分量。在矢量信号分析软件中,使用数学方法实现90° 相移。

从根本上讲,IQ解调过程就是极坐标—直角坐标的转换。通常如果没有极坐标—直角坐标转换,信息不能在极坐标格式上绘制并重解释为直角值。这种转换与IQ解调器所执行的同相和正交混合过程完全一致。

推荐阅读:

如何轻松生成IQ信号?

“本白皮书介绍了如何生成理想和非理想 IQ信号。了解如何使用波形发生器生成 IQ信号。”

对复杂调制信号执行质量测量

“在本应用指南中,我们分析了行业是否需要使用新的参数来量化复杂调制信号的质量,以及考虑如何全面推行这个参数并且标准化。”

是德科技 www.keysight.com.cn

评论 (0)
  •   天空卫星健康状况监测维护管理系统:全方位解析  在航天技术迅猛发展的当下,卫星在轨运行的安全与可靠至关重要。整合多种技术,实现对卫星的实时监测、故障诊断、健康评估以及维护决策,有力保障卫星长期稳定运转。  应用案例       系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。  一、系统架构与功能模块  数据采集层  数据处理层  智能分析层  决策支持层  二、关键技术  故障诊断技术  
    华盛恒辉l58ll334744 2025-04-10 15:46 63浏览
  •     前几天同事问我,电压到多少伏就不安全了?考虑到这位同事的非电专业背景,我做了最极端的答复——多少伏都不安全,非专业人员别摸带电的东西。    那么,是不是这么绝对呢?我查了一下标准,奇怪的知识增加了。    标准的名字值得玩味——《电流对人和家畜的效应》,GB/T 13870.5 (IEC 60749-5)。里面对人、牛、尸体分类讨论(搞硬件的牛马一时恍惚,不知道自己算哪种)。    触电是电流造成的生理效应
    电子知识打边炉 2025-04-09 22:35 178浏览
  • 行业痛点:电动车智能化催生语音交互刚需随着全球短途出行市场爆发式增长,中国电动自行车保有量已突破3.5亿辆。新国标实施推动行业向智能化、安全化转型,传统蜂鸣器报警方式因音效单一、缺乏场景适配性等问题,难以满足用户对智能交互体验的需求。WT2003HX系列语音芯片,以高性能处理器架构与灵活开发平台,为两轮电动车提供从基础报警到智能交互的全栈语音解决方案。WT2003HX芯片技术优势深度解读1. 高品质硬件性能,重塑语音交互标准搭载32位RISC处理器,主频高达120MHz,确保复杂算法流畅运行支持
    广州唯创电子 2025-04-10 09:12 163浏览
  • 文/Leon编辑/侯煜‍关税大战一触即发,当地时间4月9日起,美国开始对中国进口商品征收总计104%的关税。对此,中国外交部回应道:中方绝不接受美方极限施压霸道霸凌,将继续采取坚决有力措施,维护自身正当权益。同时,中国对原产于美国的进口商品加征关税税率,由34%提高至84%。随后,美国总统特朗普在社交媒体宣布,对中国关税立刻提高至125%,并暂缓其他75个国家对等关税90天,在此期间适用于10%的税率。特朗普政府挑起关税大战的目的,实际上是寻求制造业回流至美国。据悉,特朗普政府此次宣布对全球18
    华尔街科技眼 2025-04-10 16:39 95浏览
  • 由西门子(Siemens)生产的SIMATIC S7 PLC在SCADA 领域发挥着至关重要的作用。在众多行业中,SCADA 应用都需要与这些 PLC 进行通信。那么,有哪些高效可行的解决方案呢?宏集为您提供多种选择。传统方案:通过OPC服务器与西门子 PLC 间接通信SIMATIC S7系列的PLC是工业可编程控制器,能够实现对生产流程的实时SCADA监控,提供关于设备和流程状态的准确、最新数据。S7Comm(全称S7 Communication),也被称为工业以太网或Profinet,是西门
    宏集科技 2025-04-10 13:44 76浏览
  • 政策驱动,AVAS成新能源车安全刚需随着全球碳中和目标的推进,新能源汽车产业迎来爆发式增长。据统计,2023年中国新能源汽车渗透率已突破35%,而欧盟法规明确要求2024年后新能效车型必须配备低速提示音系统(AVAS)。在此背景下,低速报警器作为车辆主动安全的核心组件,其技术性能直接关乎行人安全与法规合规性。基于WT2003H芯片开发的AVAS解决方案,以高可靠性、强定制化能力及智能场景适配特性,正成为行业技术升级的新标杆。WT2003H方案技术亮点解析全场景音效精准触发方案通过多传感器融合技术
    广州唯创电子 2025-04-10 08:53 188浏览
  •   卫星故障预警系统软件:卫星在轨安全的智能护盾   北京华盛恒辉卫星故障预警系统软件,作为确保卫星在轨安全运行的关键利器,集成前沿的监测、诊断及预警技术,对卫星健康状况予以实时评估,提前预判潜在故障。下面将从核心功能、技术特性、应用场景以及发展走向等方面展开详尽阐述。   应用案例   目前,已有多个卫星故障预警系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星故障预警系统。这些成功案例为卫星故障预警系统的推广和应用提供了有力支持。   核心功能   实时状态监测:
    华盛恒辉l58ll334744 2025-04-09 19:49 159浏览
  • 背景近年来,随着国家对资源、能源有效利用率的要求越来越高,对环境保护和水处理的要求也越来越严格,因此有大量的固液分离问题需要解决。真空过滤器是是由负压形成真空过滤的固液分离机械。用过滤介质把容器分为上、下两层,利用负压,悬浮液加入上腔,在压力作用下通过过滤介质进入下腔成为滤液,悬浮液中的固体颗粒吸附在过滤介质表面形成滤饼,滤液穿过过滤介质经中心轴内部排出,达到固液分离的目的。目前市面上的过滤器多分为间歇操作和连续操作两种。间歇操作的真空过滤机可过滤各种浓度的悬浮液,连续操作的真空过滤机适于过滤含
    宏集科技 2025-04-10 13:45 70浏览
  •   海上电磁干扰训练系统:全方位解析      海上电磁干扰训练系统,作为模拟复杂海上电磁环境、锻炼人员应对电磁干扰能力的关键技术装备,在军事、科研以及民用等诸多领域广泛应用。接下来从系统构成、功能特点、技术原理及应用场景等方面展开详细解析。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   一、系统构成   核心组件   电磁信号模拟设备:负责生成各类复杂的电磁信号,模拟海上多样
    华盛恒辉l58ll334744 2025-04-10 16:45 94浏览
  •   卫星故障预警系统:守护卫星在轨安全的 “瞭望塔”   卫星故障预警系统作为保障卫星在轨安全运行的核心技术,集成多源数据监测、智能诊断算法与预警响应机制,实时监控卫星关键系统状态,精准预判故障。下面从系统架构、技术原理、应用场景以及发展趋势这四个关键维度展开深入解析。   应用案例   目前,已有多个卫星故障预警系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星故障预警系统。这些成功案例为卫星故障预警系统的推广和应用提供了有力支持。   系统架构与组成   卫星故障
    华盛恒辉l58ll334744 2025-04-09 17:18 134浏览
  • ‌亥姆霍兹线圈‌是由两组相同的线圈组成,线圈之间的距离等于它们的半径。当电流同时流过这两个线圈时,会在它们中间形成一个几乎均匀的磁场。这种设计克服了普通线圈磁场不均匀的缺陷,能够在中心区域形成稳定、均匀的磁场‌。‌亥姆霍兹线圈的应用领域‌包括材料、电子、生物、医疗、航空航天、化学、应用物理等各个学科。由于其操作简便且能够提供极微弱的磁场直至数百高斯的磁场,亥姆霍兹线圈在各研究所、高等院校及企业中被广泛用于物质磁性或检测实验。‌亥姆霍兹线圈可以根据不同的标准进行分类‌:‌按磁场方向分类‌:‌一维亥
    锦正茂科技 2025-04-09 17:20 134浏览
  • 什么是车用高效能运算(Automotive HPC)?高温条件为何是潜在威胁?作为电动车内的关键核心组件,由于Automotive HPC(CPU)具备高频高效能运算电子组件、高速传输接口以及复杂运算处理、资源分配等诸多特性,再加上各种车辆的复杂应用情境等等条件,不难发见Automotive HPC对整个平台讯号传输实时处理、系统稳定度、耐久度、兼容性与安全性将造成多大的考验。而在各种汽车使用者情境之中,「高温条件」就是你我在日常生活中必然会面临到的一种潜在威胁。不论是长时间将车辆停放在室外的高
    百佳泰测试实验室 2025-04-10 15:09 71浏览
  • 行业变局:从机械仪表到智能交互终端的跃迁全球两轮电动车市场正经历从“功能机”向“智能机”的转型浪潮。数据显示,2024年智能电动车仪表盘渗透率已突破42%,而传统LED仪表因交互单一、扩展性差等问题,难以满足以下核心需求:适老化需求:35%中老年用户反映仪表信息辨识困难智能化缺口:78%用户期待仪表盘支持手机互联与语音交互成本敏感度:厂商需在15元以内BOM成本实现功能升级在此背景下,集成语音播报与蓝牙互联的WT2605C-32N芯片方案,以“极简设计+智能交互”重构仪表盘技术生态链。技术破局:
    广州唯创电子 2025-04-11 08:59 122浏览
  • 技术原理:非扫描式全局像的革新Flash激光雷达是一种纯固态激光雷达技术,其核心原理是通过面阵激光瞬时覆盖探测区域,配合高灵敏度传感器实现全局三维成像。其工作流程可分解为以下关键环节:1. 激光发射:采用二维点阵光源(如VCSEL垂直腔面发射激光器),通过光扩散器在单次脉冲中发射覆盖整个视场的面阵激光,视场角通常可达120°×75°,部分激光雷达产品可以做到120°×90°的超大视场角。不同于传统机械扫描或MEMS微振镜方案,Flash方案无需任何移动部件,直接通过电信号控制激光发射模式。2.
    robolab 2025-04-10 15:30 89浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦