IQ调制信号必须用IQ解调吗?

在数字接收机中,合路信号携带幅度和相位 (I/Q)信息。到达接收端,输入信号和本振混频得到两路信号。任意一路设为0相位,另一路有90度相移。我们再次强调两路是独立的和正交的,互不干扰。这些就是基本的方法,把含有相位信息的矢量信号分解到I/Q正交两路信号。

解调过程中接收机必须完成信号载波恢,才能正确解出I/Q信息。

本振频率应跟踪发射信号载波的频率与相位,即需要进行载波同步。

输入信号和同相本振与90º相移的本振相乘进行下变频。当本振与被解调信号同频同相时,输出差频及和频分量。

当输入已调信号为

M (t) = I(t) cosωCt + Q(t) sinωCt

则 I/Q两路输出分别为

x1(t) = M(t) x 2cosωCt = 2[ I(t) cosωCt + Q(t) sinωCt ] cosωCt
= I(t) + I(t) cos2ωCt + Q(t) sin2ωCt
x2(t) = M (t) x 2sinωCt = Q(t) + Q(t) sin2ωCt + I(t) cos2ωCt

这时使用合适带宽的低通滤波器滤除2次谐波后,就可以选出频率较低的I(t)与 Q(t)调制信号。接下来就是对恢复的解调信号进行取样判决等处理,再进行并/串逆变换就可获得解调数据。从公式中可以看到只要保证I/Q正交,解调后的I/Q分量就不会相互干扰。

矢量调制和数字调制概况

我们先回顾一下矢量调制和数字调制。特别注意,虽然调制器和解调器两个术语含有硬件的意思,但是基于软件的矢量信号分析,实际上是基于DSP软件在执行调制/ 解调的。

什么是数字调制?

数字调制是无线、卫星和地面通信行业中使用的一个术语,指数字状态由载波相对相位和/或幅度表示的一种调制。虽然我们讨论的是数字调制,但是应记住这种调制并不是数字的,而真正是模拟的。调制是按照调制( 基带) 信号的幅度变化成比例地改变载波的幅度、频率或相位。在数字调制中,基带调制信号是数字式的,而调制过程不是数字的。

在数字调制中,信息包含在载波的相对相位、频率或幅度。

基于具体的应用,数字调制可以同时或单独改变幅度、频率和相位。这类调制可以通过传统的模拟调制方案,例如幅度调制(AM)、频率调制(FM) 或相位调制(PM) 来完成。

不过在实际系统中,通常使用矢量调制( 又称为复数调制或I-Q调制) 作为替代。矢量调制是一种非常强大的调制方案,因为它可生成任意的载波相位和幅度。在这种调制方案中,基带数字信息被分离成两个独立的分量: I ( 同相) 和Q ( 正交) 分量。这些I 和Q 分量随后组合形成基带调制信号。I 和Q分量最重要的特性是它们是独立的分量( 正交)。在下面的讨论中你将进一步了解 I 和 Q分量,以及数字系统使用它们的原因。

IQ调制原理

数字调制IQ图

理解和查看数字调制的简单方法是使用上图所示的 IQ或矢量图在大多数数字通信系统中,载波频率是固定的,因此只需考虑相位和幅度。未经调制的载波作为相位和频率参考,根据调制信号与载波的关系来解释调制信号。相位和幅度可以作为 IQ平面中的虚线点在极坐标图或矢量坐标图中表示。参见上图。I 代表同相位( 相位参考) 分量,Q 代表正交( 与相位相差90 °) 分量。你还可以将同相载波的某具体幅度与正交载波的某具体幅度做矢量加法运算,来表示这个点。这就是 IQ调制的原理。

将载波放入到 I-Q 平面预先确定的某个位置上,然后发射已编码信息。每个位置或状态( 或某些系统中状态间的转换) 代表某一个可在接收机上被解码的比特码型。状态或符号在每个符号选择计时瞬间( 接收机转换信号时) 在IQ平面的映射称为星座图。参见下图。

一个符号号代表一组数字数据比特; 它们是所代表的数字消息的代号。每个符号号包含的比特数即每符号号比特数(bpsym) 由调制格式决定。例如,二进制相移键控(BPSK) 使用1 bpsym,正交相移键控(QPSK) 使用2 bpsym,而8 相移键控(8PSK) 使用3 bpsym。

理论上,星座图的每个状态位置都应当显示为单个的点。但由于系统会受到了各种损伤和噪声的影响,会引起这些状态发生扩散( 每个状态周围有分散的点呈现)。此图显示了 16 QAM格式(16 正交幅度度调制) 的星座图或状态图; 注意,此时有16 个可能的状态位置。该格式使用4 比特数据串, 编码为单个幅度度/ 相位状态或符号号。为了产生这一调制格式,基于被传输的代码,I 和Q载波都需采用4 个不同的幅度度电平。

星座图中的每个位置或状态代表一个具体的比特码型( 符号号 ) 和符号号时间

在数字调制中,信号在有限数量的符号或状态中移动。载波在星座图各点间移动的速率称为符号率。使用的星座状态越多,给定比特率所需的符号率就越低。符号率十分重要因为它代表了传输信号时所需的带宽。符号号率越低,传输所需的带宽就越小。例如,前面提到过的16QAM 格式使用每符号号 4比特的速率。如果无线传输速率为16 Mbps,则符号率= 16 (Mbps) 除以 4比特即 4 MHz。此时提供的符号号率是比特率的四分之一和一个更高效的传输带宽 ( 4 MHz 相对16 MHz)。关于数字调制的更多信息,参见本应用指南结尾处的其它资源。

IQ调制

在数字通信中,IQ调制将已编码的数字I和Q基带信息放入载波中。参见下图。IQ调制生成信号的I和Q分量; 从根本上讲,它是直角坐标—极坐标转换的硬件或软件实现。

IQ调制接受 I 和Q基带信号作为输入,并将它们与相同的本地振荡器 (LO) 混合。注意,这个可能是数字( 软件) LO。下面,I 和 Q 均会上变频到射频载波频率。I 幅度度信息调制载波生成同相分量。Q幅度度信息调制90° ( 直角) 相移的载波生成正交分量。这两种正交调制载波信号相加生成复合 I-Q调制载波信号。IQ调制的主要优势是可以容易地将独立的信号分量合并为单个复合信号,随后同样容易地再将这个复合信号分解为独立的分量部分。

以 90° 分离的信号彼此之间呈直角或正交关系。I 和 Q 信号的正交关系意味着这两个信号是真正独立的,它们是同一信号的两个独立分量。虽然Q 输入的变化肯定会改变复合输出信号,但不会对I 分量造成任何影响。同样地, I 输入的变化也不会影响到Q信号。

IQ解调

如下图所示,IQ解调是上图所示的IQ调制的镜像。IQ解调从复合 IQ调制输入信号中恢复原始的 I和Q基带信号。

IQ解调( 或正交检测)

解调过程的第一步是将接收机 LO锁相至发射机载频。为了正确地恢复 I 和Q基带分量必须要把接收机 LO 锁相至发射机载波( 或混频器 LO)。随后,IQ调制载波与未相移的 LO 和相移90° 的 LO 混合,生成原始的I 和Q基带信号或分量。在矢量信号分析软件中,使用数学方法实现90° 相移。

从根本上讲,IQ解调过程就是极坐标—直角坐标的转换。通常如果没有极坐标—直角坐标转换,信息不能在极坐标格式上绘制并重解释为直角值。这种转换与IQ解调器所执行的同相和正交混合过程完全一致。

推荐阅读:

如何轻松生成IQ信号?

“本白皮书介绍了如何生成理想和非理想 IQ信号。了解如何使用波形发生器生成 IQ信号。”

对复杂调制信号执行质量测量

“在本应用指南中,我们分析了行业是否需要使用新的参数来量化复杂调制信号的质量,以及考虑如何全面推行这个参数并且标准化。”

是德科技 www.keysight.com.cn

评论
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 62浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 147浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 115浏览
  • 实用性高值得收藏!! (时源芯微)时源专注于EMC整改与服务,配备完整器件 TVS全称Transient Voltage Suppre,亦称TVS管、瞬态抑制二极管等,有单向和双向之分。单向TVS 一般应用于直流供电电路,双向TVS 应用于电压交变的电路。在直流电路的应用中,TVS被并联接入电路中。在电路处于正常运行状态时,TVS会保持截止状态,从而不对电路的正常工作产生任何影响。然而,一旦电路中出现异常的过电压,并且这个电压达到TVS的击穿阈值时,TVS的状态就会
    时源芯微 2025-01-16 14:23 166浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 50浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 185浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 153浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 122浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 257浏览
  • 一个易用且轻量化的UI可以大大提高用户的使用效率和满意度——通过快速启动、直观操作和及时反馈,帮助用户快速上手并高效完成任务;轻量化设计则可以减少资源占用,提升启动和运行速度,增强产品竞争力。LVGL(Light and Versatile Graphics Library)是一个免费开源的图形库,专为嵌入式系统设计。它以轻量级、高效和易于使用而著称,支持多种屏幕分辨率和硬件配置,并提供了丰富的GUI组件,能够帮助开发者轻松构建出美观且功能强大的用户界面。近期,飞凌嵌入式为基于NXP i.MX9
    飞凌嵌入式 2025-01-16 13:15 208浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 42浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 175浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦