【技术干货】更节省能源的新型、高效电机架构与解决方案

艾睿电子 2025-01-14 18:02






更节省能源的新型、高效

电机架构与解决方案

电机的应用相当广泛,可用于各种小型家用电器、工业制造和重型应用等,电机的多功能性使它们几乎可以用于各种用途。不过,由于电机所消耗的电力约占全球电力消耗的一半,且仍在呈不断上升的趋势。如今随着减少碳排放的要求力度不断加大,因此,通过实施新颖的控制算法、利用新型的、更高效的电机架构,以及结合现代半导体技术来提高效率变得越来越重要。本文将为您介绍电机的应用与市场,以及由安森美(onsemi)推出的相关解决方案。




变频驱动器具有更优的电机驱动效率



电机的应用范围从小型应用到重型应用,尤其是在工业应用中,工业电机驱动可说是当代全球工业的支柱,电机所消耗的电力几乎占所有工业应用中消耗的能源的三分之二。工业驱动可应用于众多任务业领域,包括流程自动化、风扇控制、液体和气体泵、机器人、物料搬运、机床、石油和天然气工业等。随着法规变得越来越严格,工业驱动追求大幅节能的必要性,变得越来越重要。其中的交流电机通常可以直接由交流电源驱动。然而,为了提高效率和卓越的控制,需要实施变频驱动(VFD)。


其中,使用变频驱动器(VFD)的工业驱动系统,比使用传统气阀控制的系统更高效。此外,在子系统中还需要使用的其他组件和技术,包括栅极驱动器、运算放大器、位置传感器、温度传感器,以及其他用于控制和传感的组件和技术,并通过使用现代半导体和新颖的电机架构,提高了电机驱动器的效率和使用寿命。


目前市面上三种最流行的电机类型是交流感应电机(ACIM)、永磁同步电机(PMSM)和无刷直流(BLDC)电机。另一方面,步进电机和伺服系统可用于精确定位和受控运动,广泛用于需要固定和定位的应用中。它们可用于为机器人手臂、装配线、升降辅助设备和其他类似应用提供动力,这些控制系统的特点是高精度和高重复性。






高效率的单相和三相交流电机解决方案


以安森美推荐的单相和三相交流电机解决方案为例,其电机驱动架构中的电网供电电机控制电路的总体架构由整流器、电源、传感、控制硬件和功率级等组成。整流器级负责将交流电(AC)转换为直流电(DC),这可以使用简单的二极管电桥来实现,但为了提高系统的效率和功率因数(从而降低无功功率),可以使用功率因数校正级。可选的DC-DC级用于将直流电压转换为电机所需的电压。辅助电源将交流输入或直流总线转换为不同的低电压,以供应控制硬件(MCU、存储器、接口等)以及栅极驱动器。


制动电路用于在减速期间耗散能量,当电机与电源断开时,它开始充当发电机。动态制动利用与功率开关(通常是IGBT)串联的制动电阻来消耗电机的功率。逆变器由将功率传输到电机的功率开关组成,根据功率级别,它们可以是Si MOSFET、IGBT或碳化硅(SiC)MOSFET。它们可以是分立的,采用电源模块或具有集成栅极驱动器的模块形式。


为了进行精确的电子换向,需要确定转子的位置。传统上,这是通过利用霍尔传感器来实现的。更新颖的解决方案使用光学或电感传感器,而一些解决方案则跳过传感器并测量反电动势。当需要知道转子的准确位置时,NCS32100等电感式位置传感器在启动期间特别有用。位置有可能在停机期间发生改变,因此系统无法依赖最后的已知状态。


安森美的NCS32100电感式传感器可用于计算位置和速度,其采用绝对编码器,无需移动即可确定其位置,支持6,000 RPM全精度(45,000最大RPM),以及±50角秒(0.0138度)或38毫米传感器的更高精度,并可以区分并抑制旋转运动产生的振动,集成CortexM0+ MCU,具有高度可配置性,是适用于各种光学编码器的更便宜替代品。






可提高电源转换效率的完整产品线


功率因数校正(PFC)级是一个AC/DC转换器,其目标是调整输入电流以匹配输入电压的形状,这减少了谐波并提高了效率。安森美的功率因数控制器NCP1681是一款无桥图腾(Totem)多模式PFC控制器,具有恒定导通时间CrM和谷值开关频率折返的固定频率CCM(恒定导通模式),以及专有的电流检测方案、专有的谷感方案,拥有高功率的理想选择,支持高达1kW的多模式应用,CCM >2.5kW,采用SOIC-20封装。


安森美还推出多款逆变开关及解决方案,电机控制系统可以使用分立组件(IGBT、Si MOSFET、SiC MOSFET、二极管、栅极驱动器等)或集成多个部件的功率模块来设计。这些模块可以在一个封装中集成三相半桥、单半桥,甚至包括制动器、PFC或栅极驱动器。功率模块可分为功率集成模块(PIM)和智能功率模块(IPM),与分立解决方案相比,模块的使用具有许多优势,由于模块集成了电源组件以及保护功能(例如UVLO、短路保护、热传感等),因此它们减少了所需的空间,并且由于经过全面测试而更加可靠。


IGBT是高压应用的最佳选择,因为与Si MOSFET 相比,它们在同等材料厚度下可提供更高的阻断电压,IGBT开关是具有成本效益的主流解决方案。安森美新系列的1200 V Trench Field Stop VII IGBT,适用于电机控制应用的低VCE(SAT)类型,增加可处理的功率并减少因热量产生的功率损耗,从而改善冷却,改进了高频操作的寄生电容,坚固耐用,1200V Gen7二极管可实现低 V和柔软度,较低的压降可降低传导损耗,柔软度是指二极管的反向恢复,反向恢复越软,噪声和电磁干扰(EMI)问题就越少。


另一款IGBT FGY100T120RWD是FS7系列的1200V、100A IGBT,集成了Gen7二极管,VCE(SAT) = 1.4V,Tjmax = 175℃,支持正温度系数,易于并联运行,具有低传导损耗和优化的电机控制应用开关。


SiC MOSFET则可为需要高电压和高频的应用提供最佳性能,具有较高的电子迁移率、较低的本征载流子浓度和较高的导热率。安森美的EliteSiC MOSFET的击穿电压范围为650V至1700V,由于采用特殊的平面设计,所有EliteSiC SiC MOSFET系列在整个生命周期内都不会出现RDS(ON)、VTH或二极管正向电压漂移。


安森美的SiC MOSFET NTH4L014N120M3P是一款来自新型1200V M3P系列的EliteSiC MOSFET,ID = 152 A,采用TO-247-4L封装,具有低开关损耗,典型的EON为1308 µJ(74 A、800 V),RDS(ON)=14 mΩ @VGS=18 V,超低栅极电荷为(QG(TOT))=137 nC,具有高速开关、低电容(COSS=146 pF)的特性。


另一款SiC MOSFET NTH4L023N065M3S是来自新型650V M3S系列的EliteSiC MOSFET,可改善开关损耗,并针对高温操作进行了优化,RDS(ON)=22.6 mΩ @VGS=18 V,与超低栅极电荷(QG(TOT))=87 nC,具有高速开关、低电容(COSS=153 pF)的特性,采用TO-247-4L封装。






高度集成的智能功率模块与功率集成模块


智能功率模块(IPM)是目前集成度最高的功率开关,该开关可以是IGBT或Si MOSFET。它是电机控制应用的热门选择,因为它能够在单个封装中包含整个逆变器和PFC级,其他优点包括EMI改进、空间优化和更简单的热设计。


安森美的智能功率模块NFCS1060L3TT是一款将PFC和逆变器完全集成在一个封装中的产品,包括PFC SJ MOSFET、六个驱动IGBT,支持600V、10A,内置过流和跨导保护,内置自举二极管和NTC,可减小PFC电感器尺寸,简化的散热器设计,降低电磁干扰。


另一款智能功率模块NFAM3065L4B可用于ACIM/BLDC/PMSM的高性能输出级,集成高侧和低侧栅极驱动器、六个IGBT,支持650V、30A,内置过流和低电压保护、热监控和温度传感器,可降低EMI和损耗。


安森美还提供采用SiC MOSFET和IGBT技术的功率集成模块(PIM),它们可以改进设计,并且可以在高达1200V的电压下使用,由于其高电压、高电流能力和较低的成本,IGBT器件仍然是主要选择,SiC器件则可提供最佳性能和功率密度,并且正在迅速得到采用。PIM可以在一个封装中包含半桥、全桥甚至整个三相逆变器,使用模块大大减少了设计时间、冷却尺寸并提高了整体集成度。


安森美的NXH800H120L7QDSG是一款额定电压为1200V、800A的IGBT半桥功率模块,采用PIM11(QD3)封装,及全新Field Stop Trench 7 IGBT技术和Gen. 7二极管,可提供更低的传导损耗和开关损耗,使设计人员能够实现高效率和卓越的可靠性,包含NTC热敏电阻与低电感布局。


NXH006P120M3F2PTHG则是一款采用F2封装的1200V SiC半桥模块,采用M3 EliteSiC技术在VGS=18V、ID = 100A时提供典型RDS(ON) = 6 mΩ,包含热敏电阻,采用HPD直接键合铜基板。


安森美还推出由PLECS®提供支持的Elite电力模拟器,PLECS是一款系统级模拟器,可通过优化的器件模型促进完整系统的建模和仿真,以实现最大速度和精度。此外,安森美还提供业界首款自助式PLECS模型生成器,允许用户创建可在Elite电力模拟器中使用的自定义模型。PLECS还提供一系列适用于工业电机控制的逆变器拓扑,包括半桥、全桥和三相逆变器。


另一方面,MOSFET和IGBT必须由栅极驱动器驱动,因为MCU或控制器无法直接驱动它们。栅极驱动器可以是单个半桥,驱动一个高侧和一个低侧开关,也可以包含三个半桥栅极驱动器,控制所有三个电机相位。安森美产品组合中的许多栅极驱动器支持外部负偏压,其中使用外部电路为栅极驱动器提供负偏压。新型NCP51752系列具有内部负偏压,可节省系统成本,因为系统无需向栅极驱动器提供负偏压轨。安森美还推出一系列的EliteSiC MOSFET产品组合和相应的隔离式栅极驱动器,可满足客户多方面的需求。





结语


随着全球对于节能减排需求的提升,新型高效电机架构和解决方案成为了能源转型中的关键环节。这些技术不仅提高了能源使用效率,降低了运营成本,更减少了对环境的影响。同时,通过智能控制、先进材料和创新的设计,这些电机实现了更灵活的运行和更稳定的性能。安森美可提供完整的电机驱动与控制解决方案,将是您开发相关应用的最佳合作伙伴。









关注

艾睿电子







前往艾睿电子国际商城 | 加入MyArrow获取专属报价


艾睿电子 艾睿电子为数十万家领先的技术制造商和服务商驱动创新,致力于发展提升商业价值及改善生活的科技解决方案。
评论
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 173浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 35浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 442浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 452浏览
  • 在不断发展的电子元件领域,继电器——作为切换电路的关键设备,正在经历前所未有的技术变革。固态继电器(SSR)和机械继电器之间的争论由来已久。然而,从未来发展的角度来看,固态继电器正逐渐占据上风。本文将从耐用性、速度和能效三个方面,全面剖析固态继电器为何更具优势,并探讨其在行业中的应用与发展趋势。1. 耐用性:经久耐用的设计机械继电器:机械继电器依靠物理触点完成电路切换。然而,随着时间的推移,这些触点因电弧、氧化和材料老化而逐渐磨损,导致其使用寿命有限。因此,它们更适合低频或对切换耐久性要求不高的
    腾恩科技-彭工 2025-01-10 16:15 97浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 474浏览
  • 电动汽车(EV)正在改变交通运输,为传统内燃机提供更清洁、更高效的替代方案。这种转变的核心是电力电子和能源管理方面的创新,而光耦合器在其中发挥着关键作用。这些不起眼的组件可实现可靠的通信、增强安全性并优化电动汽车系统的性能,使其成为正在进行的革命中不可或缺的一部分。光耦合器,也称为光隔离器,是一种使用光传输电信号的设备。通过隔离高压和低压电路,光耦合器可确保安全性、减少干扰并保持信号完整性。这些特性对于电动汽车至关重要,因为精确控制和安全性至关重要。 光耦合器在电动汽车中的作用1.电池
    腾恩科技-彭工 2025-01-10 16:14 75浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 478浏览
  • 随着全球向绿色能源转型的加速,对高效、可靠和环保元件的需求从未如此强烈。在这种背景下,国产固态继电器(SSR)在实现太阳能逆变器、风力涡轮机和储能系统等关键技术方面发挥着关键作用。本文探讨了绿色能源系统背景下中国固态继电器行业的前景,并强调了2025年的前景。 1.对绿色能源解决方案日益增长的需求绿色能源系统依靠先进的电源管理技术来最大限度地提高效率并最大限度地减少损失。固态继电器以其耐用性、快速开关速度和抗机械磨损而闻名,正日益成为传统机电继电器的首选。可再生能源(尤其是太阳能和风能
    克里雅半导体科技 2025-01-10 16:18 322浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 40浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 459浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 492浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 103浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 510浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦