【光电智造】3000字,一文带你搞懂机器学习

今日光电 2025-01-13 18:02

今日光电

     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!


----追光逐电 光引未来----

机器学习定义

机器学习(Machine Learning)本质上就是让计算机自己在数据中学习规律,并根据所得到的规律对未来数据进行预测。

机器学习包括如聚类、分类、决策树、贝叶斯、神经网络、深度学习(Deep Learning)等算法。

机器学习的基本思路是模仿人类学习行为的过程,如我们在现实中的新问题一般是通过经验归纳,总结规律,从而预测未来的过程。机器学习的基本过程如下:

机器学习基本过程


机器学习发展历程

从机器学习发展的过程上来说,其发展的时间轴如下所示:

机器学习发展历程

从上世纪50年代的图灵测试提出、塞缪尔开发的西洋跳棋程序,标志着机器学习正式进入发展期。

  • 60年代中到70年代末的发展几乎停滞。
  • 80年代使用神经网络反向传播(BP)算法训练的多参数线性规划(MLP)理念的提出将机器学习带入复兴时期。
  • 90年代提出的“决策树”(ID3算法),再到后来的支持向量机(SVM)算法,将机器学习从知识驱动转变为数据驱动的思路。
  • 21世纪初Hinton提出深度学习(Deep Learning),使得机器学习研究又从低迷进入蓬勃发展期。

从2012年开始,随着算力提升和海量训练样本的支持,深度学习(Deep Learning)成为机器学习研究热点,并带动了产业界的广泛应用。

机器学习分类

机器学习经过几十年的发展,衍生出了很多种分类方法,这里按学习模式的不同,可分为监督学习、半监督学习、无监督学习和强化学习。

监督学习

监督学习(Supervised Learning)是从有标签的训练数据中学习模型,然后对某个给定的新数据利用模型预测它的标签。如果分类标签精确度越高,则学习模型准确度越高,预测结果越精确。

监督学习主要用于回归和分类。

常见的监督学习的回归算法有线性回归、回归树、K邻近、Adaboost、神经网络等。

常见的监督学习的分类算法有朴素贝叶斯、决策树、SVM、逻辑回归、K邻近、Adaboost、神经网络等。

半监督学习

半监督学习(Semi-Supervised Learning)是利用少量标注数据和大量无标注数据进行学习的模式。

半监督学习侧重于在有监督的分类算法中加入无标记样本来实现半监督分类。

常见的半监督学习算法有Pseudo-Label、Π-Model、Temporal Ensembling、Mean Teacher、VAT、UDA、MixMatch、ReMixMatch、FixMatch等。

无监督学习

无监督学习(Unsupervised Learning)是从未标注数据中寻找隐含结构的过程。

无监督学习主要用于关联分析、聚类和降维。

常见的无监督学习算法有稀疏自编码(Sparse Auto-Encoder)、主成分分析(Principal Component Analysis, PCA)、K-Means算法(K均值算法)、DBSCAN算法(Density-Based Spatial Clustering of Applications with Noise)、最大期望算法(Expectation-Maximization algorithm, EM)等。

强化学习

强化学习(Reinforcement Learning)类似于监督学习,但未使用样本数据进行训练,是是通过不断试错进行学习的模式。

在强化学习中,有两个可以进行交互的对象:智能体(Agnet)和环境(Environment),还有四个核心要素:策略(Policy)、回报函数(收益信号,Reward Function)、价值函数(Value Function)和环境模型(Environment Model),其中环境模型是可选的。

强化学习常用于机器人避障、棋牌类游戏、广告和推荐等应用场景中。

为了便于读者理解,用灰色圆点代表没有标签的数据,其他颜色的圆点代表不同的类别有标签数据。监督学习、半监督学习、无监督学习、强化学习的示意图如下所示:


机器学习应用之道

机器学习是将现实中的问题抽象为数学模型,利用历史数据对数据模型进行训练,然后基于数据模型对新数据进行求解,并将结果再转为现实问题的答案的过程。机器学习一般的应用实现步骤如下:

  • 将现实问题抽象为数学问题;
  • 数据准备;
  • 选择或创建模型;
  • 模型训练及评估;
  • 预测结果;

这里我们以Kaggle上的一个竞赛Cats vs. Dogs(猫狗大战)为例来进行简单介绍,感兴趣的可亲自实验。

1. 现实问题抽象为数学问题

现实问题:给定一张图片,让计算机判断是猫还是狗?
数学问题:二分类问题,1表示分类结果是狗,0表示分类结果是猫。

2.数据准备

数据下载地址:
https://www.kaggle.com/c/dogs-vs-cats。


下载 kaggle 猫狗数据集解压后分为 3 个文件 train.zip、 test.zip 和 sample_submission.csv。

train 训练集包含了 25000 张猫狗的图片,猫狗各一半,每张图片包含图片本身和图片名。命名规则根据 “type.num.jpg” 方式命名。

训练集示例

test 测试集包含了 12500 张猫狗的图片,没有标定是猫还是狗,每张图片命名规则根据“num.jpg”命名。

测试集示例

sample_submission.csv 需要将最终测试集的测试结果写入.csv 文件中。


sample_submission示例

我们将数据分成3个部分:训练集(60%)、验证集(20%)、测试集(20%),用于后面的验证和评估工作。



3.选择模型

机器学习有很多模型,需要选择哪种模型,需要根据数据类型,样本数量,问题本身综合考虑。

如本问题主要是处理图像数据,可以考虑使用卷积神经网络(Convolutional Neural Network, CNN)模型来实现二分类,因为选择CNN的优点之一在于避免了对图像前期预处理过程(提取特征等)。猫狗识别的卷积神经网络结构如下面所示:


最下层是网络的输入层(Input Layer),用于读入图像作为网络的数据输入;最上层是网络的输出层(Output Layer),其作用是预测并输出读入图像的类别,由于只需要区分猫和狗,因此输出层只有2个神经计算单元;位于输入和输出层之间的,都称之为隐含层(Hidden Layer),也叫卷积层(Convolutional Layer),这里设置3个隐含层。

4.模型训练及评估

我们预先设定损失函数Loss计算得到的损失值,通过准确率Accuracy来评估训练模型。损失函数LogLoss作为模型评价指标:


准确率(accuracy)来衡量算法预测结果的准确程度:


TP(True Positive)是将正类预测为正类的结果数目。
FP(False Positive)是将负类预测为正类的结果数目。
TN(True Negative)是将负类预测为负类的结果数目。
FN(False Negative)是将正类预测为负类的结果数目。

训练过中的 loss 和 accuracy

5.预测结果

训练好的模型,我们载入一张图片,进行识别,看看识别效果:


机器学习趋势分析

机器学习正真开始研究和发展应该从80年代开始,我们借助AMiner平台,将近些年机器学习论文进行统计分析所生成的发展趋势图如下所示:


可以看出,深度神经网络(Deep Neural Network)、强化学习(Reinforcement Learning)、卷积神经网络(Convolutional Neural Network)、循环神经网络(Recurrent Neural Network)、生成模型(Generative Model)、图像分类(Image Classification)、支持向量机(Support Vector Machine)、迁移学习(Transfer Learning)、主动学习(Active Learning)、特征提取(Feature Extraction)是机器学习的热点研究。

以深度神经网络、强化学习为代表的深度学习相关的技术研究热度上升很快,近几年仍然是研究热点。

最后,引用韩愈《进学解》中的一句话:

“业精于勤,荒于嬉;行成于思,毁于随。”


来源:海豚数智科学实验室


申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566




评论
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 78浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 429浏览
  • 随着全球向绿色能源转型的加速,对高效、可靠和环保元件的需求从未如此强烈。在这种背景下,国产固态继电器(SSR)在实现太阳能逆变器、风力涡轮机和储能系统等关键技术方面发挥着关键作用。本文探讨了绿色能源系统背景下中国固态继电器行业的前景,并强调了2025年的前景。 1.对绿色能源解决方案日益增长的需求绿色能源系统依靠先进的电源管理技术来最大限度地提高效率并最大限度地减少损失。固态继电器以其耐用性、快速开关速度和抗机械磨损而闻名,正日益成为传统机电继电器的首选。可再生能源(尤其是太阳能和风能
    克里雅半导体科技 2025-01-10 16:18 319浏览
  • Snyk 是一家为开发人员提供安全平台的公司,致力于协助他们构建安全的应用程序,并为安全团队提供应对数字世界挑战的工具。以下为 Snyk 如何通过 CircleCI 实现其“交付”使命的案例分析。一、Snyk 的挑战随着客户对安全工具需求的不断增长,Snyk 的开发团队面临多重挑战:加速交付的需求:Snyk 的核心目标是为开发者提供更快、更可靠的安全解决方案,但他们的现有 CI/CD 工具(TravisCI)运行缓慢,无法满足快速开发和部署的要求。扩展能力不足:随着团队规模和代码库的不断扩大,S
    艾体宝IT 2025-01-10 15:52 160浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 448浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 449浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 476浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 436浏览
  • 电动汽车(EV)正在改变交通运输,为传统内燃机提供更清洁、更高效的替代方案。这种转变的核心是电力电子和能源管理方面的创新,而光耦合器在其中发挥着关键作用。这些不起眼的组件可实现可靠的通信、增强安全性并优化电动汽车系统的性能,使其成为正在进行的革命中不可或缺的一部分。光耦合器,也称为光隔离器,是一种使用光传输电信号的设备。通过隔离高压和低压电路,光耦合器可确保安全性、减少干扰并保持信号完整性。这些特性对于电动汽车至关重要,因为精确控制和安全性至关重要。 光耦合器在电动汽车中的作用1.电池
    腾恩科技-彭工 2025-01-10 16:14 69浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 161浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 426浏览
  • 说到福特,就要从亨利·福特(Henry Ford)这个人物说起。在发明大王爱迪生的电气工厂担任工程师的福特下班后,总是在自家仓库里努力研究和开发汽车。1896年,福特终于成功制造出一辆三轮车,开启了福特汽车的传奇。最初几年,福特都是独自制造汽车并同时进行销售。 (今天很多人都知道的精益管理中的5S方法,或多或少地受到了福特 CANDO方法的影响。)1903年,福特从牧师、律师、银行家、会计师等十一位股东那里筹集了十万美元,并在自家庭院成立了美国第五百零三家汽车公司——福特汽车公司(Fo
    优思学院 2025-01-10 11:21 49浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 466浏览
  • 在不断发展的电子元件领域,继电器——作为切换电路的关键设备,正在经历前所未有的技术变革。固态继电器(SSR)和机械继电器之间的争论由来已久。然而,从未来发展的角度来看,固态继电器正逐渐占据上风。本文将从耐用性、速度和能效三个方面,全面剖析固态继电器为何更具优势,并探讨其在行业中的应用与发展趋势。1. 耐用性:经久耐用的设计机械继电器:机械继电器依靠物理触点完成电路切换。然而,随着时间的推移,这些触点因电弧、氧化和材料老化而逐渐磨损,导致其使用寿命有限。因此,它们更适合低频或对切换耐久性要求不高的
    腾恩科技-彭工 2025-01-10 16:15 93浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦