跨年技术巨献-8篇连载
我们将以白皮书的形式介绍碳化硅MOSFET栅极氧化层可靠性,交流和直流偏压温度不稳定性,体二极管退化,抗短路和宇宙射线能力,产品标准和汽车级认证等8大话题,全文3万多字。
今天我们继续讲解
《浅谈SiC MOSFET体二极管双极性退化问题》
机制
在双极性运行(PN结,比如MOSFET的体二极管,在导电时)条件下,任何类型的SiC器件都可能出现双极退化效应。这种效应主要是由SiC晶体上早先存在的基底面位错(BPD)触发的。在双极运行期间,电子与空穴的复合所释放出的能量导致堆垛层错在BPD处蔓延。该堆垛层错将蔓延至芯片的表面,然后停止蔓延。图22中的左图所示的、被扩大的堆垛层错覆盖的区域,已经无法再导电,因此芯片的有效有源区域缩小。
图22.SiC器件中的叠层缺陷的俯视图和横截面
结合潜在的物理背景因素,可以得出双极退化是:
一种有可能发生或不发生的机制。当器件不存在BPD时(或者BPD不受复合事件影响时),将不存在双极退化效应。
所有SiC器件都存在的一种效应。由于BPD是SiC衬底(晶圆)中的一种常见缺陷,所以任何拥有PN结的SiC器件都可能发生双极退化,而无论器件类型是什么,生产厂家是谁。
一种饱和效应。一旦堆垛层错蔓延至器件表面,双极退化就会饱和。取决于通过PN结的电流和结温等运行条件,从初始状态到饱和的时间可以是几分钟到几小时的累积双极运行时间。
在应用中的影响
如前所述,内部拥有扩大的叠层缺陷的区域似乎表现出更大的电阻,因而流经它的电流即减小。图23显示了有缺陷和无缺陷的SiC器件的热图像(EMMI)。可以清楚地看到,拥有堆垛层错的区域因为流经的电流很小几乎没有产生热量。
图23. 有少量缺陷(黑色小三角形,见箭头)的和无缺陷的SiC MOSFET在导通模式下的EMMI图。颜色表示电流密度(蓝色代表密度小,红色代表密度大),加粗黑线代表器件的无源区域。
从试验中可以证实,双极退化只会使SiC器件的有源区域减小,进而使得MOSFET的RDS(on)变大,体二极管的VSD变大。器件的其它基本参数(如击穿电压、开关行为和氧化层可靠性)未发生改变。
因此,如果碳化硅器件有少量缺陷,并且饱和后的RDS(on)或VSD增大幅度仍然位于数据表给出的范围以内,则它在运行中不会有长期的负面影响。
CoolSiC™ MOSFET——消除风险的策略
英飞凌已采取专门的措施来确保其交付给客户的产品拥有稳定的性能。已采取两种措施来确保有可能使用体二极管的所有CoolSiC™ MOSFET,在发出时不存在任何导致不符合数据表规定的双极退化。
其中包括采取优化的芯片生产工艺以抑制叠层缺陷的形成,并结合有效的验证措施。
关于英飞凌
英飞凌设计、开发、制造并销售各种半导体和系统解决方案。其业务重点包括汽车电子、工业电子、射频应用、移动终端和基于硬件的安全解决方案等。
英飞凌将业务成功与社会责任结合在一起,致力于让人们的生活更加便利、安全和环保。半导体虽几乎看不到,但它已经成为了我们日常生活中不可或缺的一部分。不论在电力生产、传输还是利用等方面,英飞凌芯片始终发挥着至关重要的作用。此外,它们在保护数据通信,提高道路交通安全性,降低车辆的二氧化碳排放等领域同样功不可没。