清华大学周光敏EES:固态锂电池最新突破!

锂电联盟会长 2025-01-13 09:01
点击左上角“锂电联盟会长”,即可关注!



研究背景
固态锂金属电池(SSLMBs)在电动汽车和无人机等领域具有巨大的应用前景,因为它们具有固有的安全性和实现高能量和功率密度的潜力. 作为关键组件,具有高离子导电性、优异的热稳定性和与电极兼容性的固态电解质(SSEs)具有重要意义. SSEs主要分为固态聚合物电解质(SPEs)和固态无机电解质(SIEs). 尽管一些无机超离子导体展现出与液态电解质相媲美的超高Li+导电性,但由于其刚性和脆性,它们在锂金属电池中的应用仍存在巨大挑战. 例如,在(去)锂化过程中体积变化严重可能导致物理接触损失和可逆性差,尤其是在与高容量锂化学如硫和金属锂配对时. 此外,最近的研究表明,电解质的结构缺陷(如微裂纹和多孔区域)以及某些多晶陶瓷晶界处的本征电子导电性,会导致危险的枝晶生长和碱金属的晶界渗透. 另外,无机SSEs的柔韧性和可加工性不够,导致厚度控制成为其商业化的障碍. 另一方面,由于其高柔韧性和薄膜加工的便利性,SPEs逐渐成为研究热点. 然而,当考虑到Li+的传输与聚合物链段运动之间的强耦合时,SPEs的低离子导电性(< 10−4 S cm−1)和锂离子迁移数(tLi+< 0.6)成为问题. 为了降低结晶度以增加离子导电性,人们致力于通过修改原生聚合物或直接引入填料来降低结晶度. 然而,低结晶度会导致机械强度不足,无法保护锂负极免受枝晶生长的影响,从而可能危及电池的安全性. 在追求SPEs的离子导电性、迁移数和机械强度之间的平衡时,一些先进技术涉及制造具有刚性聚合物框架的聚合物电解质膜(例如,共价有机框架、金属有机框架和固有微孔聚合物),其特点是Li+的一维(1D)传输路径. 同样,具有空d轨道的高价金属阳离子可以与某些螯合基团的孤电子对原子配位,形成凝聚态结构中的多态转变,引入1D导电通道以协助离子迁移. 尽管有上述方法,但在同时实现高离子导电性(> 10-4 S cm-1)和机械强度(拉伸强度> 100 MPa)以及共价有机框架(COFs)的膜制备方面仍面临巨大挑战.    
π-共轭聚合物以其光学和电子性能、溶液中的易加工性、组成灵活性和可调性以及低成本而闻名。它们被广泛应用于有机电子、防弹衣和能量存储设备中。由于存在一个离域的π体系,共轭聚合物通常表现出平面结构,这促进了堆叠相互作用和结晶行为。值得注意的是,芳纶纳米纤维(ANFs)由刚性棒状聚合物链组成,能够在纺丝过程中形成液晶相,使聚合物溶液在变形方向上取向。此外,π构建单元的明确定向排列和π柱的分离阵列赋予了二维共价有机框架(2D COFs)极大的可调性和结构稳定性,为加速Li+传输提供了1D通道。在此基础上,“混合”概念的兴起变得重要,同时也需要允许扩大规模和低成本生产。
成果简介
近日,清华大学周光敏团队探索了一种基于宏观超分子组装的策略,大规模生产“fillers in the host”的层状膜作为固态电解质(SSE)的宿主。这种独特的结构不仅继承了2D COFs作为“填料”以促进1D Li+传导的优势,还保持了ANFs的高机械强度,抑制了枝晶穿透.具体来说,π-共轭聚合物之间的氢键和π-π堆叠赋予了膜超薄的厚度(4.1 μm)、高机械强度(525 MPa)和出色的热稳定性(581 ℃)。为了创建完整的Li+高速传导路径,利用桥接效应将聚偏氟乙烯-六氟丙烯(PVDF-HFP)基电解质注入层中,最终在25 ℃实现了高离子电导率(7.7×10−4 S cm−1)。同时,离子共价有机框架(iCOF)中的负电荷磺酸基团抑制了阴离子扩散,导致Li+迁移数高达0.69。此外,类似于分子笼效应,COFs对N,N-二甲基甲酰胺(DMF)溶剂的优先捕获,减轻了其在电极和电解质界面之间的不可逆分解,这可能导致与锂阳极的兼容性不佳.得益于上述优势,Li||Li对称电池表现出稳定的循环性能(累积沉积容量超过500 mAh cm-2)。固态Li||硫化聚丙烯腈(SPAN)电池在2C时显示出896 mAh g-1的高比容量,并在1C速率下稳定循环1,000次。设计策略——利用π-共轭聚合物的简便超分子组装,并与快速Li+扩散路径和刚性纤维支架和谐整合——可以在其他π-共轭系统中模仿,以实现高能量密度和安全固态电池的机械性能和离子电导率的解耦.    
该成果以“Oriented design of π-conjugated polymer framework for high-performance solid-state lithium batteries”为题发表在《Energy & Environmental Science》期刊,第一作者Wu Xian、Zhang Wei、Qu Haotian。
图文导读
本文开发了一种新型的π-共轭聚合物框架,用于高性能固态锂电池. 研究团队通过超分子定向自组装制备了一种4.1微米厚的π-共轭聚合物薄膜,作为安全的固态聚合物电解质(SPE)主体. 通过π电子工程实现局部离域化,构建了多孔平面和刚性棒状分子主链,分别用于离子传导和结构支撑. 该π-共轭聚合物膜不仅展现出高离子导电性(在25℃时沿对齐的离子路径为7.7×10⁻⁴ S cm¹),还具有卓越的拉伸强度(525 MPa),并支持Li对称电池超过2500小时的稳健循环. 此外,还提出了一种通用策略,通过将π-共轭聚合物与快速Li+扩散路径和刚性纤维支架和谐整合,实现了机械性能和离子导电性的解耦,为实现高能量密度和安全的固态电池铺平了道路.    
图1. 基于DFT计算的π-共轭聚合物性质分析. a) ANF单体中扭转角φ1, φ2的PES结果. 能量差(ΔE)以最低能量构象为参考. b) ANF超胞的DFT优化几何结构和基于局域轨道定位器(LOL-π)的π电子离域等值面图(等值面=0.46 a.u.). c) 在NUS-9上方0.5 Å处的LOL-π填充图. d) NUS-9超胞的DFT优化几何结构及其内部的等值面图(等值面=0.46 a.u.),由缩减密度梯度量化.    
图2. π-共轭聚合物主体的结构和物理化学特性表征. a) 具有COFNs外平面取向的层状ACOF-8膜的示意图. δginter-等值面(b)和δginter-符号(λ2)ρ 2D指纹图(e)用于基于独立梯度模型(等值面=0.003 a.u.)说明它们之间的不同分子间相互作用. c) ACOF-8膜的横截面SEM图像. d) NUS-9粉末、ANF、ACOF-8膜的XRD图谱. ACOF-8膜的GIWAXS数据(f)及其在qxy=0(85-95)附近的积分(g). h) 随NUS-9含量增加,π-共轭聚合物膜的FTIR图谱演变(ANF, ACOF-8, ACOF-4, ACOF-2). i) ACOF-8膜在30至110℃加热过程中的温度变量FTIR图谱的二维相关图谱(2DCOS)同步和异步图谱.    
图3. Li+传导和FSI-限制的研究. a) NUS-9的静电势图. b) FSI-在NUS-9孔道中的质量密度图(暗区代表FSI-的最高概率)随时间变化. c) PACOF-8的Li+迁移数测试结果. NUS-9孔道中Li+的MSD(d)和PVHP/LiFSI/DMF体系(e)在25℃时的MSD. f) 不同SPEs的离子导电性和活化能的Arrhenius图. g) SPEs的7Li NMR.    
图4. 溶剂捕获和枝晶抑制行为. a) 通过MD模拟展示DMF分子在NUS-9通道中传输的截图,时间分别为0 ps、50 ps和4000 ps. 颜色方案:氧原子,粉色;碳原子,灰色;氢原子,白色;氮原子,蓝色;硫原子,黄色. 所有原子均以球棍格式显示. b) NUS-9的QCM测量结果和示意图. c) PACOF-8电解质的临界电流密度(CCD)测试. d) 使用PACOF-8、PANF和PVHP-COF电解质的Li||Li电池在0.2 mA cm−2和0.2 mAh cm−2下的恒流充放电曲线. e) 在不同电流密度下,使用不同SPEs的Li-Li对称电池在恒电位测试中的电池失效时间. 虚线表示在不同电流密度下,97 μm厚锂金属对电极的预测耗尽时间. f) 不同SPEs性能特性的雷达图.    
图5. 通过电化学测量和模拟分析接触损失失效. a) Li|PANF|Li和Li|PACOF-8|Li的FEMS结果中的副反应和SEI分布. b) 使用PANF电解质在循环过程中锂负极表面形貌的变化. c) PANF膜近Li沉积侧的锂离子通量分布. d) Li|PANF|Li对称电池在0.4 mA cm−2电流密度下的模拟和实验循环曲线. e) 在0.8 mA电流下,不同阶段锂负极的局部电流密度分布.    
图6. Li||SPAN全电池的电化学性能和循环电极的界面分析. Li|PANF|SPAN(a)和Li|PACOF-8|SPAN(b)全电池在首次循环中的原位恒流EIS的Nyquist图及相应的DRT转换结果. c) 经过20个循环后,不同电解质形成的SEI的TOF-SIMS 3D视图. d) Li||SPAN电池的倍率性能. e) SPAN|Li固态电池在1C下的循环稳定性. f) Li|PACOF-8|SPAN全电池的充放电电压曲线.
总结与展望
通过精心的材料选择和复杂的结构设计,研究人员构建了一种超薄、机械强度高、热稳定性好且具有层状结构的π-共轭聚合物薄膜,该薄膜具有“fillers in the host”的结构,通过超分子自组装在大规模工业上实现. 然后将PVDF-HFP/DMF/LiFSI体系作为桥接剂引入层中,形成最终的固态电解质,克服了传统固态电解质的缺点,包括不稳定性、界面兼容性差和高电子导电性. 本研究不仅展示了π-共轭聚合物框架作为下一代能源存储技术候选者的潜力,还引入了一种创新的设计概念,将高机械强度与高离子导电性相结合。
文献信息
X. Wu, W. Zhang, H. Qu, C. Guan, C. Li, G. Lu, C. Chang, Z. Lao, Y. Zhu, L. Nie and G. Zhou, Energy Environ. Sci., 2025
DOI: 10.1039/D4EE03104K.

文章来源:清新电源
锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com或微信Ydnxke。
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)


锂电联盟会长 研发材料,应用科技
评论
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 23浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 16浏览
  • 说到福特,就要从亨利·福特(Henry Ford)这个人物说起。在发明大王爱迪生的电气工厂担任工程师的福特下班后,总是在自家仓库里努力研究和开发汽车。1896年,福特终于成功制造出一辆三轮车,开启了福特汽车的传奇。最初几年,福特都是独自制造汽车并同时进行销售。 (今天很多人都知道的精益管理中的5S方法,或多或少地受到了福特 CANDO方法的影响。)1903年,福特从牧师、律师、银行家、会计师等十一位股东那里筹集了十万美元,并在自家庭院成立了美国第五百零三家汽车公司——福特汽车公司(Fo
    优思学院 2025-01-10 11:21 6浏览
  • 在不断发展的电子元件领域,继电器——作为切换电路的关键设备,正在经历前所未有的技术变革。固态继电器(SSR)和机械继电器之间的争论由来已久。然而,从未来发展的角度来看,固态继电器正逐渐占据上风。本文将从耐用性、速度和能效三个方面,全面剖析固态继电器为何更具优势,并探讨其在行业中的应用与发展趋势。1. 耐用性:经久耐用的设计机械继电器:机械继电器依靠物理触点完成电路切换。然而,随着时间的推移,这些触点因电弧、氧化和材料老化而逐渐磨损,导致其使用寿命有限。因此,它们更适合低频或对切换耐久性要求不高的
    腾恩科技-彭工 2025-01-10 16:15 13浏览
  • 电动汽车(EV)正在改变交通运输,为传统内燃机提供更清洁、更高效的替代方案。这种转变的核心是电力电子和能源管理方面的创新,而光耦合器在其中发挥着关键作用。这些不起眼的组件可实现可靠的通信、增强安全性并优化电动汽车系统的性能,使其成为正在进行的革命中不可或缺的一部分。光耦合器,也称为光隔离器,是一种使用光传输电信号的设备。通过隔离高压和低压电路,光耦合器可确保安全性、减少干扰并保持信号完整性。这些特性对于电动汽车至关重要,因为精确控制和安全性至关重要。 光耦合器在电动汽车中的作用1.电池
    腾恩科技-彭工 2025-01-10 16:14 10浏览
  • Snyk 是一家为开发人员提供安全平台的公司,致力于协助他们构建安全的应用程序,并为安全团队提供应对数字世界挑战的工具。以下为 Snyk 如何通过 CircleCI 实现其“交付”使命的案例分析。一、Snyk 的挑战随着客户对安全工具需求的不断增长,Snyk 的开发团队面临多重挑战:加速交付的需求:Snyk 的核心目标是为开发者提供更快、更可靠的安全解决方案,但他们的现有 CI/CD 工具(TravisCI)运行缓慢,无法满足快速开发和部署的要求。扩展能力不足:随着团队规模和代码库的不断扩大,S
    艾体宝IT 2025-01-10 15:52 147浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 20浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 20浏览
  • LVGL(Light and Versatile Graphics Library)是一个免费的开源图形库,旨在为各种微控制器(MCU)和微处理器(MPU)创建美观的用户界面(UI)。LVGL可以在占用很少资源的前提下,实现丝滑的动画效果和平滑滚动的高级图形,具有轻量化、跨平台可用性、易于移植、操作友好以及免费使用等诸多优势。近期,飞凌嵌入式为OK3506J-S开发板移植了最新9.2版本的LVGL,支持多种屏幕构件以及鼠标、键盘、触摸等多种输入方式, 能够带来更加友好的操作界面;同时,启动速度也
    飞凌嵌入式 2025-01-10 10:57 6浏览
  • 随着全球向绿色能源转型的加速,对高效、可靠和环保元件的需求从未如此强烈。在这种背景下,国产固态继电器(SSR)在实现太阳能逆变器、风力涡轮机和储能系统等关键技术方面发挥着关键作用。本文探讨了绿色能源系统背景下中国固态继电器行业的前景,并强调了2025年的前景。 1.对绿色能源解决方案日益增长的需求绿色能源系统依靠先进的电源管理技术来最大限度地提高效率并最大限度地减少损失。固态继电器以其耐用性、快速开关速度和抗机械磨损而闻名,正日益成为传统机电继电器的首选。可再生能源(尤其是太阳能和风能
    克里雅半导体科技 2025-01-10 16:18 12浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 18浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 18浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦