分享一款国产开源的零中断延迟RTOS:CosyOS

strongerHuang 2025-01-12 12:21

关注+星标公众,不错过精彩内容

作者 | 来源gitee


基于用心做过项目的朋友应该知道在项目,以关闭总中断等方式来保护临界段所带来的危害性(丢失响应、处理延误)。比如高速通讯接收丢帧、高速捕获丢失脉冲等中断丢失响应现象。


有些RTOS肆意关闭总中断,且未能提供“系统最大关闭中断时间”等核心关键参数,实时性已无从谈起。据统计,越来越多的用户均对此表达了不满,并对RTOS中断响应的实时性提出了要求,希望高优先级中断能够实时抢占、零中断延迟。


随着时代的发展、科技的进步,零中断延迟已经成为可能......于是,就有工程师开发了一款零中断延迟的RTOS:CosyOS.


开源地址:

https://gitee.com/cosyos/cosyos


关于CosyOS

CosyOS是一款来自中国的开源实时操作系统,从经典的8051内核,到流行的Arm Cortex-M内核,均可实现全局不关总中断、零中断延迟,适用于对系统实时性及中断响应速度有较高要求的场合。
CosyOS以极具浪漫主义色彩的宏定义,实现了高度的面向对象及良好的易用性。
CosyOS以零中断延迟为宗旨,突破创新为方针,简单易用为原则。

CosyOS-实时运行模型

  • 用户中断层
    -> 中断本地服务的执行
    -> 中断挂起服务的装载

  • 内核服务层

    • SysTick [minpri]
      -> 软件RTC/定时器计数
      -> 恢复定时任务
      -> 调用定时钩子/滴答钩子(滴答服务的执行)

    • PendSV [minpri]
      -> 中断挂起服务的执行
      -> 任务调度/切换

    • 任务临界区 [关闭SysTick/PendSV]
      -> 任务服务的执行

  • 任务层

    • Taskmgr[maxpri]

    • Debugger[maxpri]

    • Starter[maxpri-1]

    • 一般用户任务[maxpri-1 ~ minpri+1:1]

    • 用户空闲任务[minpri:0]

    • 系统空闲任务[minpri:0]

  • 用户中断按中断优先级实时抢占、零中断延迟

  • 不同优先级的任务抢占式调度,相同优先级的任务时间片轮转调度

零中断延迟基本原理

  • 服务层中,SysTick、PendSV、任务临界区,三者间是互斥访问的。换言之,整个服务层是一个大临界区(服务层临界区)。

  • 所有内核服务(中断本地服务除外),均在 “服务层临界区” 执行,从而保证服务的 “操作流” 不会被打断。

  • 中断本地服务采用互斥访问机制。

初体验

下面,让我们来初步体验一下CosyOS的易用性。

CosyOS一步创建任务示例:

任务名称任务优先级任务栈大小安全运行时私信
demo1_task1级128字节0,无限长0,无私信
demo2_task2级256字节9个时间片3个参数

注1:安全运行时是CosyOS的安全关键技术,可防止某任务长期独占或超时使用处理器。
注2:私信是CosyOS独创的一种任务间通信方式,可用来实现信号、事件、消息等功能。

# 静态创建demo1_task
uCreateTask(demo1_task, 1, 128, 0, 0)
{
uSendTaskMsg(demo2_task) "hello", 999, 3.14); // 发送私信至demo2_task
uDelay_ms(100); // 阻塞延时100ms
uEndTasking; // 所有任务线程的最后一句代码
}
# 动态创建demo2_task
dCreateTask(demo2_task, 2, 256, 9, 3)(char *p, int a, float b)
{
if(uRecvTaskMsg(500)){ // 接收私信,超时时间为500个滴答周期,返回真则接收成功
/* 使用私信(读取p、a、b)*/
}
uEndTasking;
}
# 启动钩子
void start_hook(void)
{
uStartTask(demo1_task, 0); // 启动demo1_task并置任务的初始状态为就绪状态
uStartTask(demo2_task, 1); // 启动demo2_task并置任务的初始状态为挂起状态
}

您有没有眼前一亮呢?CosyOS创建一个任务竟如此简单,通过调用API并输入各项参数,而后直接写任务代码即可(已集成循环,用户可不必再写循环)。下一步就是在启动钩子中启动任务,任务便可参与调度并运行了。
CosyOS还开创性的把任务形参用做私信,私信参数(数量、名称、类型)可随意定义,与普通函数定义形参如出一辙。其它应用也都有着异曲同工之妙,即无论做什么事,都尽可能做到简化流程一步完成,最大程度的降低开发者的工作量,给开发者创造一个温馨舒适的开发环境。

突破创新

  • 实现了所有内核全局不关总中断(零中断延迟),保证了中断的实时响应

  • 独家技术实现系统服务的可重入,使51彻底摆脱可重入栈、全面提速

  • 针对51做了高度的性能优化,使51迸发出蓬勃生机、熠熠生辉

  • 251支持MSP、PSP两种栈模式,其中PSP模式可使任务的切换效率等同于Cortex-M

  • 定时服务(软件定时器中断),包括定时中断任务/钩子、定时查询任务/钩子,优先级都可由用户灵活配置

  • 软件RTC,支持设置时间和获取时间,可替代硬件RTC

  • 独创的飞信,极简类型、极速通信,是线程间通信的利器

  • 独创的私信,随意定义,灵活多变,便于多条消息的传递

  • 消息邮箱,每个邮箱在创建时,都可定义自己的数据类型,极大的丰富了邮件的形式,方便了线程间消息的传递

  • 消息队列,支持静态队列和动态队列,传输模式支持FIFO、LIFO,采用高效的指针引用方式

  • 事件标志组,声明标志组的同时定义标志位,不同标志组的标志位可以重名,对标志组和标志位的访问通过组名和位名来实现,极大的方便了标志组的应用

  • 全局变量访问,支持在任意任务和中断中对全局变量的安全访问,而不必担心重入的发生

  • 安全关键技术,有多项安全关键技术,如中断挂起服务空间隔离、安全运行时,可靠性高

  • 任务栈监控,拥有多项任务栈监控措施,可提前预判任务栈溢出的风险

因循守旧

  • 完全开源的免版税、确定性的RTOS

  • 任务调度支持抢占式调度、时间片轮转调度

  • 用户任务数量不限,且每个任务都可以有255级优先级(0~254)

  • 简洁高效的代码,极低的硬件资源占用,使CosyOS可轻松应用于各种小型MCU

  • 任务管理器,可实时监控各任务的运行,便于开发者急时发现设计中存在的潜在问题

    —————————— CosyOS-任务管理器 ——————————

支持内核

CosyOS现支持8051、80251、Cortex-M等内核,未来会陆续添加对其它内核的支持。

编译环境

CosyOS是在keil C51、C251、MDK-Arm编译器下开发的,对其支持最好。
未来,将会陆续优化调整对其它编译器的支持。

文件说明


名称描述
SystemCosyOS的内核文件
ur_api.h:用户API
sv_:系统服务文件
os_:其它内核文件
ConfigCosyOS的配置文件
syscfg.h:系统配置文件
mcucfg_:MCU配置文件
HookCosyOS的系统钩子
CosyOS已经为用户创建好了六个系统钩子函数,
分别位于各自的同名文件中,用户直接写代码即可。

------------ END ------------



●专栏《嵌入式工具

●专栏《嵌入式开发》

●专栏《Keil教程》

●嵌入式专栏精选教程


关注公众号回复“加群”按规则加入技术交流群,回复“1024”查看更多内容。

点击“阅读原文”查看更多分享。

strongerHuang 作者黄工,高级嵌入式软件工程师,分享嵌入式软硬件、物联网、单片机、开发工具、电子等内容。
评论 (0)
  • 一、温度计不准的原因温度计不准可能由多种原因导致,如温度计本身的质量问题、使用环境的变化、长时间未进行校准等。为了确保温度计的准确性,需要定期进行校准。二、校准前准备工作在进行温度计校准之前,需要做好以下准备工作:1. 选择合适的校准方法和设备,根据温度计的型号和使用需求来确定。2. 确保校准环境稳定,避免外部因素对校准结果产生影响。3. 熟悉温度计的使用说明书和校准流程,以便正确操作。三、温度计校准方法温度计校准方法一般分为以下几步:1. 将温度计放置在
    锦正茂科技 2025-03-31 10:27 54浏览
  •        在“软件定义汽车”的时代浪潮下,车载软件的重要性日益凸显,软件在整车成本中的比重逐步攀升,已成为汽车智能化、网联化、电动化发展的核心驱动力。车载软件的质量直接关系到车辆的安全性、可靠性以及用户体验,因此,构建一套科学、严谨、高效的车载软件研发流程,确保软件质量的稳定性和可控性,已成为行业共识和迫切需求。       作为汽车电子系统领域的杰出企业,经纬恒润深刻理解车载软件研发的复杂性和挑战性,致力于为O
    经纬恒润 2025-03-31 16:48 54浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 105浏览
  • 北京贞光科技有限公司作为紫光同芯产品的官方代理商,为客户提供车规安全芯片的硬件、软件SDK销售及专业技术服务,并且可以安排技术人员现场支持客户的选型和定制需求。在全球汽车电子市场竞争日益激烈的背景下,中国芯片厂商正通过与国际领先企业的深度合作,加速融入全球技术生态体系。近日,紫光同芯与德国HighTec达成的战略合作标志着国产高端车规芯片在国际化道路上迈出了关键一步,为中国汽车电子产业的发展注入了新的活力。全栈技术融合:打造国际化开发平台紫光同芯与HighTec共同宣布,HighTec汽车级编译
    贞光科技 2025-03-31 14:44 87浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 114浏览
  • Shinco音响拆解 一年一次的面包板社区的拆解活动拉开帷幕了。板友们开始大显身手了,拆解各种闲置的宝贝。把各自的设计原理和拆解的感悟一一向电子爱好者展示。产品使用了什么方案,用了什么芯片,能否有更优的方案等等。不仅让拆解的人员了解和深入探索在其中。还可以让网友们学习电子方面的相关知识。今天我也向各位拆解一个产品--- Shinco音响(如下图)。 当产品连接上电脑的耳机孔和USB孔时,它会发出“开机,音频输入模式”的语音播报,。告诉用户它已经进入音响外放模式。3.5mm耳机扣接收电脑音频信号。
    zhusx123 2025-03-30 15:42 107浏览
  • 在环保与经济挑战交织的当下,企业如何在提升绩效的同时,也为地球尽一份力?普渡大学理工学院教授 查德·劳克斯(Chad Laux),和来自 Maryville 大学、俄亥俄州立大学及 Trine 大学的三位学者,联合撰写了《精益可持续性:迈向循环经济之路(Lean Sustainability: Creating a Sustainable Future through Lean Thinking)》一书,为这一问题提供了深刻的答案。这本书也荣获了 国际精益六西格玛研究所(IL
    优思学院 2025-03-31 11:15 77浏览
  • REACH和RoHS欧盟两项重要的环保法规有什么区别?适用范围有哪些?如何办理?REACH和RoHS是欧盟两项重要的环保法规,主要区别如下:一、核心定义与目标RoHS全称为《关于限制在电子电器设备中使用某些有害成分的指令》,旨在限制电子电器产品中的铅(Pb)、汞(Hg)、镉(Cd)、六价铬(Cr6+)、多溴联苯(PBBs)和多溴二苯醚(PBDEs)共6种物质,通过限制特定材料使用保障健康和环境安全REACH全称为《化学品的注册、评估、授权和限制》,覆盖欧盟市场所有化学品(食品和药品除外),通过登
    张工13144450251 2025-03-31 21:18 69浏览
  • 在智能语音交互设备开发中,系统响应速度直接影响用户体验。WT588F系列语音芯片凭借其灵活的架构设计,在响应效率方面表现出色。本文将深入解析该芯片从接收指令到音频输出的全过程,并揭示不同工作模式下的时间性能差异。一、核心处理流程与时序分解1.1 典型指令执行路径指令接收 → 协议解析 → 存储寻址 → 数据读取 → 数模转换 → 音频输出1.2 关键阶段时间分布(典型值)处理阶段PWM模式耗时DAC模式耗时外挂Flash模式耗时指令解析2-3ms2-3ms3-5ms存储寻址1ms1ms5-10m
    广州唯创电子 2025-03-31 09:26 185浏览
  • 在不久前发布的《技术实战 | OK3588-C开发板上部署DeepSeek-R1大模型的完整指南》一文中,小编为大家介绍了DeepSeek-R1在飞凌嵌入式OK3588-C开发板上的移植部署、效果展示以及性能评测,本篇文章不仅将继续为大家带来关于DeepSeek-R1的干货知识,还会深入探讨多种平台的移植方式,并介绍更为丰富的交互方式,帮助大家更好地应用大语言模型。1、移植过程1.1 使用RKLLM-Toolkit部署至NPURKLLM-Toolkit是瑞芯微为大语言模型(LLM)专门开发的转换
    飞凌嵌入式 2025-03-31 11:22 186浏览
  • 在智能家居领域,无线门铃正朝着高集成度、低功耗、强抗干扰的方向发展。 WTN6040F 和 WT588F02B 两款语音芯片,凭借其 内置EV1527编解码协议 和 免MCU设计 的独特优势,为无线门铃开发提供了革命性解决方案。本文将深入解析这两款芯片的技术特性、应用场景及落地价值。一、无线门铃市场痛点与芯片方案优势1.1 行业核心痛点系统复杂:传统方案需MCU+射频模块+语音芯片组合,BOM成本高功耗瓶颈:待机电流
    广州唯创电子 2025-03-31 09:06 147浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 79浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 108浏览
  • 升职这件事,说到底不是单纯靠“干得多”或者“喊得响”。你可能也看过不少人,能力一般,甚至没你努力,却升得飞快;而你,日复一日地拼命干活,升职这两个字却始终离你有点远。这种“不公平”的感觉,其实在很多职场人心里都曾经出现过。但你有没有想过,问题可能就藏在一些你“没当回事”的小细节里?今天,我们就来聊聊你升职总是比别人慢,可能是因为这三个被你忽略的小细节。第一:你做得多,但说得少你可能是那种“默默付出型”的员工。项目来了接着干,困难来了顶上去,别人不愿意做的事情你都做了。但问题是,这些事情你做了,却
    优思学院 2025-03-31 14:58 76浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦