到底什么是光交换(OCS)技术?

鲜枣课堂 2025-01-07 20:26

本文摘自开放数据中心委员会ODCC的“ODCC-2024-AI网络光交换机技术报告”。


光交换机负责在光纤间建立和断开连接,高性能的光交换能够实现毫秒级或更快的切换速度,对于满足数据中心动态流量需求至关重要。



根据实现技术的不同,光交换技术一般可分为 3D MEMS(Micro-Electro-Mechanical System )技术、数字液晶 DLC(Digital Liquid Crystal)技术、直接光束偏转 DLBS(Direct Light Beam Steering)技术。


光交换的主要性能指标包括:

  • 切换速度:切换速度是光交换的重要性能指标,直接影响到数据中心网络的动态响应能力。高性能的光交换应具备毫秒级的切换速度,以满足高频率的流量变化需求。

  • 插入损耗:插入损耗是光信号通过光交换时的功率损耗,较低的插入损耗有助于提高信号质量和传输距离。

  • 回波损耗:回波损耗是光信号在通过光交换时入射光功率反射光功率的比值,较高的回波损耗有助于减少信号反射和干扰。

  • 耐用性和可靠性:光交换的耐用性和可靠性是确保数据中心网络稳定运行的关键,高性能的光交换应具备较长的使用寿命和较低的故障率。

1. 3D MEMS 光交换

MEMS 光交换由输入光纤准直器阵列(FAU: Fiber array unit)、输入 MEMS 微镜阵列,输出 MEMS 微镜阵列、输出光纤准直器阵列及配套驱动、控制软硬件构成。其中输入输出 MEMS 微镜单元为二维双轴反射型微镜面阵,两片 MEMS 微镜阵列构成 N*N 的矩阵开关阵列。结构如下图所示:


输入光信号经过光纤阵列并以一定角度依次入射 MEMS 微镜阵列对应微镜单元,每个微镜单元拥有独立的驱动控制,通过施加不同的电信号实现所需的转角;输入 MEMS 微镜阵列通过调整微镜单元的转角将入射信号偏转到目的输出微镜阵列对应的微镜单元,完成选路或交叉,输出微镜阵列负责将光信号偏转,正入射到输出光纤准直器阵列对应端口,实现最佳耦合输出使得光交换插损最优。

MEMS 微镜阵列由半导体工艺实现,MEMS 微镜单元由反射镜、驱动结构和电互联组成,镜面直径约几百微米,驱动结构驱动 MEMS反射镜实现二维偏转,从而实现光路偏转功能;常见的驱动方式有磁电驱动、静电梳齿驱动及热电驱动等,磁电驱动采用洛伦兹工作原理,微镜单元的线圈在电流通过时,磁场产生洛伦兹力驱动镜面旋转,驱动电压较低,线性度较好,但需要磁铁阵列,封装相对复杂.

此外,由于驱动时线圈需要通电,且不同转角对应的电流不同,容易产生发热与温漂问题;热电驱动通过改变微镜驱动臂的温度,驱动臂不同材料热膨胀温度系数不同实现微镜偏转,驱动臂温度较高容易形变产生应力,功耗较高、响应速度较慢、转角精度较差;通常 MEMS 微镜采用静电驱动,在构成的垂直梳齿结构的固定梳齿和可动梳齿之间施加电压,在交错的梳齿之间静电力作用下,可动梳齿发生位移,驱动微镜旋转。不同的偏置电压使镜面发生不同的偏转角度,如下图所示。

图 MEMS 光交换:(a)微镜阵列示意图,(b)阵元组成与原理示意图

2. 数字液晶技术 DLC 光交换

液晶是一种特性介于固态和液态之间的物质相态。液晶材料既具备液体的流动性,液晶分子的排列又具备晶体的长程有序性,形成一种兼有晶体和液体的部分性质的中间态。液晶分子在排列上的有序性和各向异性,使得液晶材料具备和晶体材料一样的折射率各向异性、介电常数各向异性等物理特性。在液晶盒两端施加电压时,液晶分子会发生偏转,导致液晶的双折射系数发生变化,产生相位延迟,这一现象是液晶的电光效应。利用这一特性可以实现 LCLM (液晶光模块),在外部电场调制下入射光的偏振态经过液晶盒会发生旋转。数字液晶光交换系统利用液晶的电光效应与晶体光楔的级联相结合,能够将 N 个端口的输入光任意调度到 N 个端口进行输出,完成 N × N 的液晶光开关的功能。数字液晶光交交换利用液晶的电光效应与晶体光楔的级联产生光束偏转,能够将 N 个端口的输入光任意交换到任意 N 个输出端口,完成 N × N 的液晶光交换功能。

数字液晶光交换构成与关键部件功能包括:光纤准直器阵列 FAU(提供 N*N 端口信号光的输入与输出)、偏振处理模块(对入射光进行 S 偏振与 P 偏振的分束与合束),LCLM 液晶光模块阵列(LC 可调延迟器与双折射晶体光楔的组合经过多层级联而成,实现 N*N 信号光偏转),如下图 所示。


数字液晶光交换切换原理是:LC 可调延迟器基于电光响应特性对入射光的偏振态进行旋转,不同偏振态的入射光经过双折射晶体光楔后会产生不同的出射角度,从而实现光束偏转,其中偏转角度为固定的离散值。

其中,1 层 LC 可调延迟器与晶体光楔的组合可以实现 2 个离散角度的偏转(2 态调制)。系统交换维度扩展到 M 维端口切换则需要共 L 层组合,满足 2^L>M。例如,对于 256 端口,需要对应 8 层可调 LC 和晶体光楔的组合,可以是 x 方向切换 4 层+y 方向切换 4 层,完成二维的 256 端口切换。该技术对装调工艺要求很高,预计最大可支持 512 端口。

3. 直接光束偏转 DLBS 光交换

直接光束偏转光交换是将光纤准直器直接固定在压电陶瓷驱动器上,每个准直器尾部与压电陶瓷相连,排列成二维准直器阵列,将两个二维准直器阵列面对面放置,构成光开关矩阵,利用压电陶瓷机电耦合效应,驱动准直器位移与角度倾斜,使两阵列对应端口匹配对准,完成通道连接,实现光交换功能。

该方案中,光信号从输入准直器阵列端口输入,直接传输至输出准直器耦合输出,过程中无需经过其他光学系统反射或透射,光信号传输光程短,利于降低光信号传输及耦合损耗;而随着通道数增加,交叉矩阵规模增大,对角端口等大角度交叉对准时,要求光纤准直器的转角与位移增大,这对压电陶瓷驱动的性能要求提高,且实现位移所需的空间体积增加,相应的增加了光信号传输距离,插损进一步增加,一定程度上制约了光交叉连接的规模光束直接偏转技术的核心是固态驱动技术,利用压电陶瓷机电耦合效应特性,将电能转换成机械能来产生位移,直接驱动准直器或者透镜的移动,以改变光束的传输方向,并实现对应准直器组件的直接耦合。DLBS 光交换原理如下图所示。


4.光交换技术比较

下表总结了三种不同技术方案的技术对比情况:


综上所述,光交换机实现了任意输入 N 端口到输出 N 端口的无阻赛交换,属于端口交换,其优点是与信号波长、调制格式及速率无关,协议透明,具有极高的调度效率。
转载自:通信百科


参考阅读:
什么是OXC(全光交叉)?
如何区分FOADM、ROADM和OXC?
关于ROADM的入门科普

鲜枣课堂 学通信,学5G,就上鲜枣课堂!
评论
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 108浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 93浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 47浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 137浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 191浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 159浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 41浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 45浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 208浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 108浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 81浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 152浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦