轻松进行动态图异常检测,南洋理工提出GeneralDyG

OpenCV学堂 2025-01-05 20:54

点击上方↑↑↑OpenCV学堂”关注我

来源:公众号 机器之心 授权


此项研究成果已被 AAAI 2025 录用。该论文的第一作者是南洋理工大学计算与数据科学学院 (CCDS) 的硕士生杨潇,师从苗春燕教授,主要研究方向是图神经网络。该论文的通讯作者为南洋理工大学百合研究中心的瓦伦堡 - 南洋理工大学校长博士后研究员赵雪娇;申志奇,南洋理工大学计算与数据科学学院高级讲师,高级研究员。



  • 论文标题:A Generalizable Anomaly Detection Method in Dynamic Graphs

  • 论文链接:https://arxiv.org/abs/2412.16447

  • 代码:https://github.com/YXNTU/GeneralDyG


研究背景与问题描述


随着动态图数据的广泛应用,它在社交网络、电商和网络安全等领域展现了强大的建模能力。然而,与静态图相比,动态图因节点和边的动态演变特性,给数据分析带来了更大的挑战,尤其是在异常检测方面。异常检测是保障系统安全和数据完整性的关键任务,旨在识别显著偏离正常模式的异常事件,例如欺诈交易、社交媒体垃圾信息和网络入侵等。及时发现这些异常对系统的可靠性和安全性至关重要。


基于深度学习的动态图异常检测方法已取得一定进展,例如利用图神经网络提取结构信息或通过时序模型捕获时间依赖性。然而,这些方法在通用性方面仍存在显著不足。具体而言,它们通常难以适应不同的数据集和任务场景,难以高效捕获动态图中局部与全局的复杂特征。此外,一些方法在处理大规模动态图时计算成本较高,异常事件的编码也不够准确,导致在新场景中的检测性能显著下降。


方法设计


本文针对动态图异常检测中的数据分布多样、动态特征捕捉困难以及计算成本高三大挑战,提出了一种通用方法(GeneralDyg)。首先,为应对数据分布多样问题,我们提取节点、边及其拓扑结构的关键信息,从而适应不同数据集的复杂特征分布。其次,为解决动态特征捕捉的难题,我们结合全局时间动态和局部结构变化,深入建模动态图中的多尺度动态模式。最后,为降低计算成本,我们构建了一种轻量化框架,能够高效捕获关键动态特征,同时显著提升计算效率。


如图 1 所示,本文方法由三部分组成,每部分针对上述挑战提供了解决方案:


(a)时间 ego-graph 采样模块,通过构建紧凑的子图结构有效应对计算资源限制;(b)图神经网络提取模块,全面捕获动态图的节点与边的多样性和复杂结构;(c)时间感知 Transformer 模块,有效融合全局和局部动态特征。

 

图 1 :动态图异常检测框架 GeneralDyG 的整体架构


(a)时间 ego-graph 采样模块旨在通过构建紧凑的子图结构有效缓解动态图大规模数据带来的计算压力。具体来说,该模块基于中心事件,通过 k-hop 算法提取其周围交互历史,构成时间 ego-graph。k-hop 算法的设计考虑了事件间的时间顺序与拓扑关系,确保采样过程兼顾时间动态与结构特性。此外,为了捕捉事件之间的层级关系,该模块引入了特殊标记(如层级标记符号)来分隔不同层次的交互信息。这些标记能够帮助 Transformer 模块更好地识别与学习时间序列中的层级动态。此外,该模块还通过限制 k 的范围来控制采样的规模,从而在信息完整性与计算效率之间取得平衡。这样的设计在保留动态结构信息的同时,显著降低了计算复杂度。


(b)在时间 ego-graph 的基础上,本文设计了一种新的图神经网络(TensGNN)来提取丰富的结构信息。TensGNN 通过交替应用节点层和边层来实现特征信息的传播与更新,从而在节点特征和边特征之间构建强关联。具体而言,节点层利用节点的邻接矩阵和特定拉普拉斯矩阵进行卷积运算,同时结合边的特征更新节点表示。相应地,边层则基于边的邻接关系和节点的状态更新边的特征表示。这种交替堆叠的方式能够更好地捕捉动态图中的局部与全局特性。此外,该模块引入了轻量化的算子,避免了冗余计算,在大规模数据集上也能保持较高的计算效率。


(c)时间感知 Transformer 模块:最后,GeneralDyG 通过时间感知 Transformer 模块整合时间序列和结构特征。在自注意力机制中,模型分别利用 Query 和 Key 编码图的拓扑结构信息,而将 Value 保留为原始事件特征,以确保异常检测的准确性。通过这一模块,模型能够有效捕获动态图中全局的时间依赖性和局部的动态变化,从而实现对复杂异常模式的准确建模。


实验验证

本文在节点级别(node level)和边级别(edge level)两个层面上进行了实验评估,使用了四个真实数据集:SWaT 和 WADI 用于节点级别异常检测,Bitcoin-Alpha 和 Bitcoin-OTC 用于边级别异常检测。


我们将 GeneralDyG 与 20 种主流基线方法进行对比,这些基线方法涵盖了图嵌入(如 node2vec、DeepWalk)和异常检测(如 TADDY、SAD、GDN)两大类别。实验通过 AUC、AP 和 F1 等指标全面评估模型性能,并在不同异常比例(1%、5%、10%)下进行了系统性测试。结果表明,GeneralDyG 在所有数据集上均显著优于现有方法,展现了卓越的通用性与检测能力,如图 2 所示。


图 2 Bitcoin-Alpha 和 Bitcoin-OTC 数据集上的边异常检测性能对比。


总结


总的来说,我们提出了一种通用的动态图上异常检测方法 GeneralDyg,解决数据分布多样、动态特征捕获难和计算成本高三大核心问题,GeneralDyG 展现了卓越的通用性和鲁棒性,为动态图异常检测提供了一种高效且通用的解决方案。详细方法流程以及实验结果请参考原文。


OpenCV4系统化学习


深度学习系统化学习

推荐阅读

OpenCV4.8+YOLOv8对象检测C++推理演示

ZXING+OpenCV打造开源条码检测应用

攻略 | 学习深度学习只需要三个月的好方法

三行代码实现 TensorRT8.6 C++ 深度学习模型部署

实战 | YOLOv8+OpenCV 实现DM码定位检测与解析

对象检测边界框损失 – 从IOU到ProbIOU

初学者必看 | 学习深度学习的五个误区


OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 91浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 124浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 84浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 99浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 118浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 92浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 74浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 105浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 54浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 54浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦