固态电解质,NatureChemistry!

锂电联盟会长 2025-01-01 09:03

点击左上角“锂电联盟会长”,即可关注!

▲第一作者:Zhantao Liu
通讯作者:Jue Liu, Yifei Mo, Hailong Chen
通讯单位:美国橡树岭国家实验室,美国马里兰大学帕克分校,美国佐治亚理工学院
DOI:10.1038/s41557-024-01634-6(点击文末「阅读原文」,直达链接)
研究背景
Li3MX6族卤化物(M = Y、In、Sc等,X =卤素)是新兴的全固态锂离子电池固体电解质材料。与现有的硫化物固体电解质相比,它们具有更高的化学稳定性和更宽的电化学稳定窗口,但在室温下的离子导电率较低。

研究问题
本文报告了一项发现,即Li3YCl6中的超离子跃迁是由阴离子的集体运动触发的,这一结论得到了同步辐射X射线和中子散射表征以及从头算分子动力学模拟的证据支持。基于这一发现,本文采用了一种合理的设计策略来降低该类化合物的转变温度,从而提高其室温下的离子导电率。本文合成了Li3YClxBr6x和Li3GdCl3Br3,并分别实现了Li3YCl4.5Br1.5和Li3GdCl3Br3在室温下非常高的导电率,分别为6.1和11 mS cm1这些发现为高性能固体电池的室温超离子导体的设计开辟了新的途径。

图1| LYC的晶体结构

要点1:
1.LYC样品通过在200℃下热压球磨的LYC粉末合成,并通过XRD和ND进行表征。据报道,LYC在不同的多形体中结晶,其中三斜P3-M1结构在固态合成过程中最常见。图1a显示了所得LYC的ND图案,可以描述为具有六角密堆阴离子子晶格的P3-M1结构,其堆叠序列为ABABAB。P3-M1相的平均结构可以描述为两种类型层(如图1b所示)的交替堆叠。这两层都包含LiCl6、YCl6和Cl6(其中V表示空位)八面体。Y3+占据三种不同的八面体位置:一个1a位点(M1)和两个2d位点(M2和M3)。如图1c,d所示,1a位点和一个2d位点(M3)位于同一层面(以下简称Y层)。值得注意的是,共享面的YCl6八面体中心之间的距离仅为~3Å,如果M2和M3位点同时被占据,会产生大的静电排斥和能量不利状态。因此,两个位点的Y部分占据很可能是由于Y空位排列在a–b平面上的差异,而不是沿c方向的堆叠无序造成的。这一点进一步通过中子对分布函数(nPDF)得到确认,在约3Å处没有观察到正峰。另一个Y所在的2d位点位于相邻层,即富锂层(以下简称Li层)。Li+占据两个八面体位点:Li层的6h位点完全由Li+占据,Y层的6g位点在室温下部分由Li+占据。6g和6h位点通过共享面的LiCl6八面体连接,形成Li+沿c轴的长程扩散通道。此外,八面体(O)位点也被广泛认为通过两个四面体(T)位点连接,形成沿a–b平面的二维(2D)扩散路径(O–T–O路径)。

图2|通过在不同温度下的ND模式生成的FDMs可视化LYC的离子电导率和Li扩散路径

要点2:
1.本文接着在比先前报告更广泛的温度范围内测量了LYC颗粒的电导率。图2a显示了LYC电导率的阿伦尼乌斯图。在130℃以下,LYC在25℃时的离子电导率为1.4 × 104  S/cm,激活能Ea为0.70 eV。然而,在较高温度下斜率明显较平缓,激活能Ea大幅降低至0.22 eV,显示出II型超离子转变(SIT),并表明在Tc以上通过不同的机制显著促进了扩散。这种在卤化物中的SIT也被Ong及其同事和Wang等人通过计算报道过。这个低的Ea接近于Mo等人在其AIMD模拟中获得的值。将阿伦尼乌斯曲线从Tc外推到室温RT,预期的σRT为29 mS/cm,这也与AIMD模拟相符。显然,低于Tc的陡峭阿伦尼乌斯斜率是之前实验测得的离子电导率与理论预测之间差异的主要原因。

2.本文进一步通过变温中子衍射(ND)研究了结构变化。如图2b所示,尽管由于热膨胀导致峰位置明显偏移,LYC在不同温度下的衍射图样保持了相似的布拉格反射。使用在100 K和500 K收集的ND数据,从精修结构(空间群P3-M1)生成了傅里叶差分图(FDMs;Fcalc - Fobs,其中Fcalc和Fobs分别代表计算和观测的结构因子)(图2)。在100 K时,两个主要Li位点6g和6h上可以看到非常明显的残余Li散射长度密度(图2c),而在这两个位点之间,无论是在a–b平面内还是沿着c轴方向,都没有注意到明显的密度(截止值为-0.035 fm Å-3)。

3.将残余密度截止值进一步降低到-0.02 fm Å-3显示了沿c轴的连接,但在a–b平面内仍然没有任何明显的连接(图2d)。这表明Li+扩散可能是一维的(沿c轴),且具有较高的能量壁垒,这与EIS测定的高Ea值(0.70 eV)一致。与此形成鲜明对比的是,在500 K时(图2e),在阈值为-0.03 fm Å-3的情况下,6g位点上的残余Li+密度清晰地相连,形成了围绕M1 Y位点的六边形环,这些环在a–b平面内。在阈值为-0.02 fm Å^-3时,这些环进一步连接形成2D扩散路径(图2f),表明在a–b平面内存在促进的2D扩散通道。

图3| 阴离子配体的集体运动及其对Li离子扩散行为的影响

要点3:
1.里特维尔德法对中子衍射数据(ND)的精修结果如图3所示。图3a展示了晶格参数。2c/a比率的增加证实了各向异性热膨胀的存在。在先前的报道中,P3-M1结构中的Li层(6g位置)的Li位点通常被认为是完全占据的。然而,本文的精修结果显示,在400K以下,6g位点的占据是部分的,而6h位点则是完全占据的(见图3b)。对精修结构的详细检查揭示了Li+配位环境与Cl阴离子的集体运动密切相关。从100到400K,Li+占据的变化有限,YCl6八面体的体积变化也较小(见图3c)。

2.YCl6八面体的形变可以通过评估Cl–Y–Cl角度来量化:M1Cl6中的φ11,M3Cl6中的φ22和φ33(见图3d),以及M2Cl6中的φ22′和φ33′(见图3e)。φ11角(Cl–M1–Cl)的轻微增加表明M1Cl6八面体沿着c轴略微压缩(见图3f)。相邻的面共享M2Cl6–M3Cl6链被观察到朝向相反方向摇摆(见补充视频1)。这种相关的阴离子运动仅导致层内Cl–Cl距离(即两个相邻LiCl6八面体之间的边,记为S12和S33,见图3d)略有增加。

3.在500K时,M1Cl6和M3Cl6八面体沿c轴突然伸长(见图3f)。相应地,本文识别出φ22和φ33(Cl–Y3–Cl)角度的急剧缩小(见图3f)和S12及S33(层内Cl–Cl)距离的急剧增加(见图3g),这些共同表明M1Cl6和M3Cl6八面体发生了“呼吸”式的相关运动,进而导致a–b平面内6g Li+位点间扩散通道瓶颈的急剧扩张(位于z=0平面,即Y层)。模式转换的促进效应也可以从扩散瓶颈窗口(BN1和BN3)面积的变化中看出。

图4| 不同温度下LYC的AIMD模拟

要点4:
1.这一转变通过图4a中展示的AIMD模拟得到了证实,在350到400 K之间,S12和S33的平均距离都出现了跃升。在低温350 K时,a–b平面内的离子扩散不活跃(如图4b所示),这与ND分析结果一致,但在高温下变得活跃,例如600 K(如图4c所示)。除了S12和S33平均距离的跃升外,还可以看到S12和S33距离的分布更广,并且向更大距离的不对称尾部也可以观察到,这也表明在较高温度下扩散通道的瓶颈在更长时间内被打开(图4d,e)。

图5| 在Li3YCl6xBrx中激活a-b平面内的2D Li+扩散路径

要点5:
1.阴离子运动对快速离子传导的影响之前也有讨论过,这表明这可能是调节离子动力学的一个重要因素。在LYC中发现SIT启发我们开发一种设计策略来增强这种电解质材料的性能:通过将Tc调节到室温或更低温度,可以实现显著改善的室温离子电导率,这可能通过调节LYC中的元素组成和键合来实现。“呼吸”模式很可能与金属-卤素键的性质有关。

2.本文假设,由于Br相对于Cl具有较低的电负性和更高的极化率,部分用Br替代Cl可能会促进“呼吸”模式而不是“摇摆”模式,从而可以降低Tc。之前关于C2/m空间群(LYB结构)的卤化物固体电解质的研究也表明,阴离子混合可能会降低迁移壁垒。因此,本文设计和成功合成了一系列Li3YCl6xBrx化合物,通过球磨和随后的热压处理。它们的XRD图样(0 ≤ x ≤ 1.5)如图5a所示。对于x ≤ 1.5,获得了与LYC同构的纯相。在Li3YCl5Br和Li3YCl4.5Br1.5的XRD图样中,观察到的~5.3 Å处的峰宽明显被抑制。对于x = 2,可以观察到明显的杂质,可以索引为LYB相。由于Br(1.96 pm)相对于Cl(1.81 pm)的尺寸更大,Li3YCl6xBrx的晶格参数随Br掺杂的增加而线性增加。同时,随着更多Br的掺杂,~3.9和5.0 Å处的峰变得更窄且更对称,表明Y3+空位的面内有序长度逐渐增加。

3.本文发现:随着Br含量的增加,Li3YCl6xBrx的单元沿c轴方向变长。通过纳米压痕测量了Li3YCl4.5Br1.5的杨氏模量和硬度,并与LYC进行了比较。结果显示,Li3YCl4.5Br1.5的模量和硬度均低于LYC,这很可能是由于Br相对于Cl具有更高的极化率。图5b显示了从200℃热压成型的圆片的EIS分析中提取的Li3YCl6xBrx的离子电导率。样品的导电率的Arrhenius图在高温下(>130℃)几乎相同,显示出~0.22 eV的Ea。每个样品在不同的温度下显示出SIT,随着Br掺杂的增加,Tc降低:LYC为130℃,Li3YCl5.5Br0.5为100℃,Li3YCl5Br为90℃,Li3YCl4.5Br1.5为70℃。因此,Li3YCl4.5Br1.5在80℃时显示出超过100 mS cm-1的离子电导率,以及6.1 mS cm^-1的σRT(图5b)。

图6| 设计Li3GdCl3Br3作为固态电解质

总结与展望
本研究系统地揭示了具有LYC结构的卤化物中的超离子相变是由阴离子集体运动的变化触发的,这不仅解释了之前实验和计算结果之间的差异,还为电解质材料提供了一种有效的理性设计策略。按照这一策略设计了Li3YClxBr6x和Li3GdCl3Br3以降低Tc值。实现了较低的Tc值分别为70和-10℃,并在Li3YCl4.5Br1.5和Li3GdCl3Br3中分别达到了高室温导电率6.1和11 mS cm1。这是通过使用同步辐射和中子散射技术进行的深入晶体结构表征揭示的结构-性质关系指导的理性材料设计的成功范例。发现高导电性的卤化物固态电解质为发展全固态锂氧电池(ALSOLIBs)和离子导体的设计提供了新的选择。

原文链接:
https://www.nature.com/articles/s41557-024-01634-6

转载自:研之成理

锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com或微信Ydnxke。
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)


锂电联盟会长 研发材料,应用科技
评论
  • 本文继续介绍Linux系统查看硬件配置及常用调试命令,方便开发者快速了解开发板硬件信息及进行相关调试。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。查看系统版本信息查看操作系统版本信息root@ido:/# cat /etc/*releaseDISTRIB_ID=UbuntuDISTRIB_RELEASE=20.04DISTRIB_CODENAME=focalDIS
    Industio_触觉智能 2025-01-03 11:37 65浏览
  • 【工程师故事】+半年的经历依然忧伤,带着焦虑和绝望  对于一个企业来说,赚钱才是第一位的,对于一个人来说,赚钱也是第一位的。因为企业要活下去,因为个人也要活下去。企业打不了倒闭。个人还是要吃饭的。企业倒闭了,打不了从头再来。个人失业了,面对的不仅是房贷车贷和教育,还有找工作的焦虑。企业说,一个公司倒闭了,说明不了什么,这是正常的一个现象。个人说,一个中年男人失业了,面对的压力太大了,焦虑会摧毁你的一切。企业说,是个公司倒闭了,也不是什么大的问题,只不过是这些公司经营有问题吧。
    curton 2025-01-02 23:08 173浏览
  • 影像质量应用于多个不同领域,无论是在娱乐、医疗或工业应用中,高质量的影像都是决策的关键基础。清晰的影像不仅能提升观看体验,还能保证关键细节的准确传达,例如:在医学影像中,它对诊断结果有着直接的影响!不仅如此,影像质量还影响了:▶ 压缩技术▶ 存储需求▶ 传输效率随着技术进步,影像质量的标准不断提高,对于研究与开发领域,理解并提升影像质量已成为不可忽视的重要课题。在图像处理的过程中,硬件与软件除了各自扮演着不可或缺的基础角色,有效地协作能够确保图像处理过程既高效又具有优异的质量。软硬件各扮演了什么
    百佳泰测试实验室 2025-01-03 10:39 55浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 77浏览
  • 国际标准IPC 标准:IPC-A-600:规定了印刷电路板制造过程中的质量要求和验收标准,涵盖材料、外观、尺寸、焊接、表面处理等方面。IPC-2221/2222:IPC-2221 提供了用于设计印刷电路板的一般原则和要求,IPC-2222 则针对高可靠性电子产品的设计提供了进一步的指导。IPC-6012:详细定义了刚性基板和柔性基板的要求,包括材料、工艺、尺寸、层次结构、特征等。IPC-4101:定义了印刷电路板的基板材料的物理和电气特性。IPC-7351:提供了元件封装的设计规范,包括封装尺寸
    Jeffreyzhang123 2025-01-02 16:50 155浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 81浏览
  • 车身域是指负责管理和控制汽车车身相关功能的一个功能域,在汽车域控系统中起着至关重要的作用。它涵盖了车门、车窗、车灯、雨刮器等各种与车身相关的功能模块。与汽车电子电气架构升级相一致,车身域发展亦可以划分为三个阶段,功能集成愈加丰富:第一阶段为分布式架构:对应BCM车身控制模块,包含灯光、雨刮、门窗等传统车身控制功能。第二阶段为域集中架构:对应BDC/CEM域控制器,在BCM基础上集成网关、PEPS等。第三阶段为SOA理念下的中央集中架构:VIU/ZCU区域控制器,在BDC/CEM基础上集成VCU、
    北汇信息 2025-01-03 16:01 76浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 87浏览
  • Matter加持:新世代串流装置如何改变智能家居体验?随着现在智能家庭快速成长,串流装置(Streaming Device,以下简称Streaming Device)除了提供更卓越的影音体验,越来越多厂商开始推出支持Matter标准的串流产品,使其能作为智能家庭中枢,连结多种智能家电。消费者可以透过Matter的功能执行多样化功能,例如:开关灯、控制窗帘、对讲机开门,以及操作所有支持Matter的智能家电。此外,再搭配语音遥控器与语音助理,打造出一个更加智能、便捷的居家生活。支持Matter协议
    百佳泰测试实验室 2025-01-03 10:29 60浏览
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 48浏览
  • 前言近年来,随着汽车工业的快速发展,尤其是新能源汽车与智能汽车领域的崛起,汽车安全标准和认证要求日益严格,应用范围愈加广泛。ISO 26262和ISO 21448作为两个重要的汽车安全标准,它们在“系统安全”中扮演的角色各自不同,但又有一定交集。在智能网联汽车的高级辅助驾驶系统(ADAS)应用中,理解这两个标准的区别及其相互关系,对于保障车辆的安全性至关重要。ISO 26262:汽车功能安全的基石如图2.1所示,ISO 26262对“功能安全”的定义解释为:不存在由于电子/电气系统失效引起的危害
    广电计量 2025-01-02 17:18 146浏览
  • 在测试XTS时会遇到修改产品属性、SElinux权限、等一些内容,修改源码再编译很费时。今天为大家介绍一个便捷的方法,让OpenHarmony通过挂载镜像来修改镜像内容!触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,树莓派卡片电脑设计,支持开源鸿蒙OpenHarmony3.2-5.0系统,适合鸿蒙开发入门学习。挂载镜像首先,将要修改内容的镜像传入虚拟机当中,并创建一个要挂载镜像的文件夹,如下图:之后通过挂载命令将system.img镜像挂载到sys
    Industio_触觉智能 2025-01-03 11:39 57浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦