Keli内部的IRAM和IROM设置-分散加载文件

原创 云深之无迹 2024-12-31 09:17

不知道你们有没有见过这个设置,下面这个RAM和ROM的设置是什么意思?这个东西的名字叫分散加载。

Scatter-Loading 描述文件是一种用于描述嵌入式系统中代码和数据在内存中的布局方式的文件。它告诉链接器如何将编译生成的目标文件中的代码和数据段分配到不同的内存区域。

Gemini

CW32L010F8

RAM

CW32有4KB

从下面开始写起

这个加载文件需要在这里打开

只读存储器(ROM) 和 随机存取存储器(RAM)。ROM就是flash的大小

还有这个

其实还有个文件做分散加载:

这里面Flash以及SRAM的地址以及大小都是可以修改的,其他的也可以修改,但起始地址以及大小都要在芯片真实存在的有效物理地址上,这部分需要参看芯片的用户手册里面的Memory MAP一节的内容,

如下图是一个MCU的Memory MAP,参看分散加载里面的地址,Flash以及SRAM的起始地址以及大小都落在有效的空间上了。

这个地址是和上面的文件对应的

举个例子:

两段

<1>分散加载的根本功能是指定程序在存储空间上面的存储分配以及运行空间的分配,所有要有加载域和运行域来分别指定程序存储空间以及程序运行空间。
一般来说程序的运行空间是在芯片的ROM类存储器里面,在Cortex-M里面基本就是芯片内部的Flash空间;
<2>运行域就有意思了,由于MCU内部的Flash(几乎都是Nor-Flash)是可以运行代码的,但是不能用于变量也就是RW与ZI的加载,主要原因是变量需要经常修改,几个小时就可能连续改变几十万次,但是目前Flash工艺的写寿命介于10万次~100万次之间,如果把RW和ZI放在Flash上,那就是灾难,Flash会因为写次数的限制很快就会挂掉,而且Flash只能按块操作,开销太大,所以一般都是放到SRAM里面。
所以你会看到在这个例子里面,运行域分成两个部分,RO数据段放在内部Flash里面,RW与ZI放到片内SRAM中去执行。
这点与电脑是不同的,电脑的硬盘是完全不能执行程序的,所以如果你把电脑看成MCU的话,用Keil来编写程序的话,那么电脑的RO、RW、ZI段都是放到内存上执行的,也就是说电脑实际上只有一个执行域就在内存上,可以类似理解为MCU的片内SRAM上。
<3>所以分散加载可以简单理解为的最基本结构就是至少3个域(这个事实上不对,但是对于大多数Cortex-M系列MCU的分散加载可以这样简单理解):至少一个加载域、建议两个运行域(一个RO运行域、一个RW+ZI运行域),就是你要告诉链接器至少3个信息:
即:从哪里加载程序(至少一个域)、在哪里运行程序(至少一个域)、在哪里读写程序运行中用到的变量(至少一个域,实际上也可以跟运行程序的域在一起,但强烈建议分开)。
  1. 加载域(LR):指定代码和数据在内存中的初始加载地址和大小。
  2. 运行域(ER):指定代码和数据在执行时的运行地址和大小。
映像文件可以分为加载域(Load Region)和运行域(Execution Region):加载域反映了 ARM 可 执行映像文件的各个段存放在存储器中的位置关系。
运行域反映了 ARM 可执行映像文件各个段真正执行时在存储器中的位置关系:

简单的说,加载域就是程序在 Flash 中的实际存储,而运行域是芯片上电后的运行状态。

通过上面的框图可以看出,RW 区也是要存储到 ROM/Flash 里面的,在执行映像之前,必须将已初始化 的 RW 数据从 ROM 中复制到 RAM 中的执行地址并创建 ZI Section(初始化为 0 的变量区)。
如果你自己编写分散加载文件,先把这把这3个结构写出来,看个文件:

LR_IROM1就是【加载域】,指定了用户程序存储在0x00000000起始大小为0x80000的地址上,用户程序从这个区域内加载;
ER_IROM1就是【运行域】,是RO的运行域,因为MCU内部的Flash可以运行代码,所以用户代码可以从这个区域内运行;
RW_IRAM1就是【运行域】,是RW+ZI的运行域,这里指向的是片内SRAM的地址。
https://blog.csdn.net/lyn631579741/article/details/102833734?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-4-102833734-blog-122264625.235^v43^pc_blog_bottom_relevance_base8&spm=1001.2101.3001.4242.3&utm_relevant_index=7


评论
  • 常见通信标准无线通信标准蜂窝移动通信标准:如 2G(GSM)、3G(WCDMA、CDMA2000、TD - SCDMA)、4G(LTE)以及 5G 等。以 5G 为例,其具有高速率、低时延、大容量等特点,为智能交通、工业互联网和物联网等领域提供支持。无线局域网标准:主要是 IEEE802.11 标准,也就是我们常说的 Wi - Fi。例如 IEEE802.11ac 和 IEEE802.11ax(Wi-Fi 6)等标准,不断提升无线局域网的传输速度和稳定性。短距离无线通信标准:包括蓝牙(Bluet
    Jeffreyzhang123 2025-01-02 14:33 46浏览
  • 随着全球汽车行业向更加清洁、可持续的能源转型,燃料电池汽车(FCV)作为一种具有广阔前景的技术,正逐渐受到业界的广泛关注。这类氢能源车辆通过燃料电池中的电化学反应,将氢气转化为电能,并仅产生水作为副产品,展现出显著的环境效益。然而,氢气的易燃性也为燃料电池汽车的安全带来了挑战,因此,高效的氢气泄漏检测系统和残氢排放监控技术对于确保车辆的安全性和可靠性至关重要。 ‌一、氢能源车氢气泄漏检测技术‌为了确保燃料电池汽车的安全性,氢气传感器被广泛应用于氢气泄漏检测中。这些传感器能够集成到车辆的
    锂电小助手 2025-01-02 10:05 53浏览
  • 国际标准IPC 标准:IPC-A-600:规定了印刷电路板制造过程中的质量要求和验收标准,涵盖材料、外观、尺寸、焊接、表面处理等方面。IPC-2221/2222:IPC-2221 提供了用于设计印刷电路板的一般原则和要求,IPC-2222 则针对高可靠性电子产品的设计提供了进一步的指导。IPC-6012:详细定义了刚性基板和柔性基板的要求,包括材料、工艺、尺寸、层次结构、特征等。IPC-4101:定义了印刷电路板的基板材料的物理和电气特性。IPC-7351:提供了元件封装的设计规范,包括封装尺寸
    Jeffreyzhang123 2025-01-02 16:50 97浏览
  • 【工程师故事】+半年的经历依然忧伤,带着焦虑和绝望  对于一个企业来说,赚钱才是第一位的,对于一个人来说,赚钱也是第一位的。因为企业要活下去,因为个人也要活下去。企业打不了倒闭。个人还是要吃饭的。企业倒闭了,打不了从头再来。个人失业了,面对的不仅是房贷车贷和教育,还有找工作的焦虑。企业说,一个公司倒闭了,说明不了什么,这是正常的一个现象。个人说,一个中年男人失业了,面对的压力太大了,焦虑会摧毁你的一切。企业说,是个公司倒闭了,也不是什么大的问题,只不过是这些公司经营有问题吧。
    curton 2025-01-02 23:08 83浏览
  •  在这个日新月异的科技时代,智能家居正以前所未有的速度融入我们的日常生活,从智能灯光到温控系统,从安防监控到语音助手,每一处细节都透露着科技的温度与智慧。而在这场智能化浪潮中,一个看似不起眼却至关重要的组件——晶体管光耦,正扮演着连接物理世界与数字世界的隐形桥梁角色,默默推动着智能家居行业的发展与革新。 晶体管光耦——智能家居的“神经递质”晶体管光耦,作为一种能够将电信号转换为光信号,再通过光信号控制另一侧电路开关的电子元器件,其独特的工作原理使得它在隔离传输、抗干扰及保护电
    晶台光耦 2025-01-02 16:19 66浏览
  • 很荣幸收到富芮坤 FR3068x-C低功耗开发板,参加测评。断断续续看了一些资料,今天有时间把开发环境初步搭建好了,能下载程序了。记录一下,给大家分享一下。1、找不到ARMCM33_DSP_FP。安装Keil。我之前安装的Keil版本低,下载了重新安装了5.41,安装完成后,在工程配置页面的Device页面没有找到官方说的ARMCM33_DSP_FP,下图为官方文档内的截图,没有关系,注意右边涂黄色部分,Pack 的信息。打开keil的Pack Installer,找到ARM::CMSIS,找到
    王晓明 2025-01-01 15:38 98浏览
  • 在科技飞速发展的今天,机器人已经逐渐深入到我们生活和工作的各个领域。从工业生产线上不知疲倦的机械臂,到探索未知环境的智能探测机器人,再到贴心陪伴的家用服务机器人,它们的身影无处不在。而在这些机器人的背后,C 语言作为一种强大且高效的编程语言,发挥着至关重要的作用。C 语言为何适合机器人编程C 语言诞生于 20 世纪 70 年代,凭借其简洁高效、可移植性强以及对硬件的直接操控能力,成为机器人编程领域的宠儿。机器人的运行环境往往对资源有着严格的限制,需要程序占用较少的内存和运行空间。C 语言具有出色
    Jeffreyzhang123 2025-01-02 16:26 94浏览
  •  近年来,消费电子行业难言景气,长期处于萎靡不振的状态。其中,作为明星品类的智能手机同样被寒意所笼罩,出货量持续下跌。据IDC发布的报告显示,2023年全年,中国智能手机市场出货量约2.71亿台,同比下降5.0%,创近10年以来最低出货量。不过,在智能手机行业整体低迷之际,折叠屏手机却表现亮眼,成为智能手机市场唯一实现增长的品类。据IDC发布的跟踪报告显示,2023年,中国折叠屏手机市场出货量约700.7万台,同比增长114.5%。而这也是自2019年首款产品上市以来,出货量连续4年同
    刘旷 2025-01-02 11:27 37浏览
  • 起源与诞生:AI 技术的起源可以追溯到 20 世纪 40 年代,随着计算机技术的兴起,科学家们开始思考如何让机器具备类似人类的智能。1950 年,英国数学家艾伦・图灵提出了著名的 “图灵测试”,为 AI 技术的发展奠定了理论基础。1956 年,美国达特茅斯学院举行了一次人工智能研讨会,标志着 AI 作为一门独立学科的诞生。符号主义阶段(20 世纪 50 年代 - 70 年代):研究人员主要关注如何使用符号逻辑和推理规则来模拟人类思维,试图通过构建复杂的逻辑系统来解决各种问题。然而,由于这种方法的
    Jeffreyzhang123 2025-01-02 15:15 81浏览
  • 从无到有:智能手机的早期探索无线电话装置的诞生:1902 年,美国人内森・斯塔布菲尔德在肯塔基州制成了第一个无线电话装置,这是人类对 “手机” 技术最早的探索。第一部移动手机问世:1938 年,美国贝尔实验室为美国军方制成了世界上第一部 “移动” 手机。民用手机的出现:1973 年 4 月 3 日,摩托罗拉工程师马丁・库珀在纽约曼哈顿街头手持世界上第一台民用手机摩托罗拉 DynaTAC 8000X 的原型机,给竞争对手 AT&T 公司的朋友打了一个电话。这款手机重 2 磅,通话时间仅能支持半小时
    Jeffreyzhang123 2025-01-02 16:41 93浏览
  • 2层PCB设计时候回路的寄生电感计算方式。由两个平面构成电流路径的回路电感,取决于每个平面路径的局部自感和它们之间的局部互感。平面越宽,电流分布就越扩散开,平面的局部自感就越小,从而回路电感也就越小。平面越长,局部自感就越大,从而回路电感也就越大。平面间距越小,平面之间的互感就越大,从而回路电感也就越小。当该区域为正方形,即长度等于宽度时,无论边长是多少,长和宽之比始终等于1。令人惊奇的是,一对平面上的边长为100mil的正方形区域和边长为1in的正方形区域的回路电感相同。平面对上的任一正方形区
    tao180539_524066311 2025-01-02 13:51 45浏览
  • 早期概念与探索阶段(19 世纪以前):在古代,人类就对自动机械充满了想象,如古希腊时期的希罗发明的自动门、水钟等自动装置,中国古代的指南车、木牛流马等,虽然这些装置不能称之为真正的机器人,但为后来机器人的发展奠定了思想基础。从概念走向实践阶段(19 世纪~20 世纪初):随着工业革命的到来,自动机概念开始与实际机械设计结合,出现了具有实际功能的自动机械,例如雅卡尔提花机等,可通过穿孔卡片控制编织图案,为后续可编程控制的机器人发展提供了灵感。现代机器人产业萌芽期(1920 年代~1950 年代):
    Jeffreyzhang123 2025-01-02 14:53 81浏览
  • 前言近年来,随着汽车工业的快速发展,尤其是新能源汽车与智能汽车领域的崛起,汽车安全标准和认证要求日益严格,应用范围愈加广泛。ISO 26262和ISO 21448作为两个重要的汽车安全标准,它们在“系统安全”中扮演的角色各自不同,但又有一定交集。在智能网联汽车的高级辅助驾驶系统(ADAS)应用中,理解这两个标准的区别及其相互关系,对于保障车辆的安全性至关重要。ISO 26262:汽车功能安全的基石如图2.1所示,ISO 26262对“功能安全”的定义解释为:不存在由于电子/电气系统失效引起的危害
    广电计量 2025-01-02 17:18 99浏览
  • 在科技飞速发展的今天,5G 通信技术无疑是最耀眼的明星之一。它如同一场数字革命的风暴,以其前所未有的速度、极低的延迟和强大的连接能力,为我们的生活、经济和社会带来了翻天覆地的变化,开启了一个万物互联的崭新时代。5G 技术的卓越特性5G,即第五代移动通信技术,相比其前辈们,有着诸多令人瞩目的特性。首先是超高速率。5G 网络的理论峰值下载速度可达 10Gbps,这意味着下载一部高清电影只需短短几秒钟,而 4G 网络可能需要几分钟甚至更长时间。这种高速率让高清视频流、云游戏等对带宽要求极高的应用变得流
    Jeffreyzhang123 2025-01-02 14:18 60浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦