【光电智造】三维重建技术概述

今日光电 2024-12-25 18:03

 今日光电 

     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!




----追光逐电 光赢未来----

三维重建技术通过深度数据获取、预处理、点云配准与融合、生成表面等过程,把真实场景刻画成符合计算机逻辑表达的数学模型。这种模型可以对如文物保护、游戏开发、建筑设计、临床医学等研究起到辅助的作用。


一、研究背景及意义


人类通过双眼来探索与发现世界。人类接收外部信息的方式中,有不到三成来自于听觉、触觉、嗅觉等感受器官,而超过七成、最丰富、最复杂的信息则通过视觉[1]进行感知的。计算机视觉便是一种探索给计算机装备眼睛(摄像头)与大脑(算法)的技术,以使计算机能够自主独立的控制行为、解决问题,同时感知、理解、分析外部环境。

20世纪60年代,计算机视觉得到了最初的发展。该阶段的研究重心主要体现在如何从二维图像中恢复出如立方体、圆柱体等立体化的三维形状,解释各个物体的空间位置关系。

1982年,David Marr[2]从信息处理的角度对数学、神经生理学、计算机图形学等学科的研究成果进行了归纳总结,并在此基础上提出了一系列计算机视觉理论。得益于这个完整明确的理论体系,计算机视觉得到了蓬勃的发展。它的核心思想是从二维图像恢复三维结构。图1-1展示的是经典Marr视觉信息处理过程。

图1-1 Marr视觉信息处理过程

随着科学技术的日新月异,计算机视觉的应用日益受到各行业的关注和重视,如设备检测与监视、医学图像处理、文物保护[3]、机器人视觉、自动导航、工业产品外观设计与生产等领域。计算机视觉技术为人们带来了机遇,也带来了挑战。

三维重建作为计算机视觉技术中最为最为热门的研究方向之一,涉及到包括图像处理、立体视觉、模式识别等多个学科体系。利用计算机建立表达现实客观景物的三维模型,并以此来满足生产和生活的需要。随着工业化进程的不断发展,多种技术的实现均有赖于目标物体三维信息的获取。三维重建现已被广泛的应用于生活和科研工作中,特别是在医学治疗、文物保护、游戏开发、工业设计、航天航海等方面,展现出了极强的生命力和影响力。


二、 三维重建技术简介


三维重建技术的重点在于如何获取目标场景或物体的深度信息。在景物深度信息已知的条件下,只需要经过点云数据[4]的配准及融合,即可实现景物的三维重建。基于三维重建模型的深层次应用研究也可以随即展开。人们按照被动式测量与主动式测量[5]对目标物体深度信息的获取方法进行了分类,下面对这两种方式进行相应的介绍。

1、被动式三维重建技术

被动式一般利用周围环境如自然光的反射,使用相机获取图像,然后通过特定算法计算得到物体的立体空间信息。主要有以下三种方法:

1.1 纹理恢复形状法

各种物体表面具有不同的纹理信息,这种信息由纹理元组成,根据纹理元可以确定表面方向,从而恢复出相应的三维表面。这种方法称为纹理恢复形状法[6] (Shape From Texture,SFT)。
纹理法的基本理论为:作为图像视野中不断重复的视觉基元,纹理元覆盖在各个位置和方向上。当某个布满纹理元的物体被投射在平面上时,其相应的纹理元也会发生弯折与变化。例如透视收缩变形使与图像平面夹角越小的纹理元越长,投影变形会使离图像平面越近的纹理元越大。通过对图像的测量来获取变形,进而根据变形后的纹理元,逆向计算出深度数据。SFT对物体表面纹理信息的要求严苛,需要了解成像投影中纹理元的畸变信息,应用范围较窄,只适合纹理特性确定等某些特殊情形。所有在实际使用中较为少见。

1.2 阴影恢复形状法

SFS[7] (Shape From Shading,从阴影恢复形状)法也是一种较为常用的方法。考虑到图像的阴影边界包含了图像的轮廓特征信息,因此能够利用不同光照条件下的图像的明暗程度与阴影来计算物体表面的深度信息,并以反射光照模型进行三维重建。需要注意的是,像素点的亮度受到包括光源指标、摄像机参数、目标表面材质等的制约。

阴影恢复形状法的应用范围比较广泛,可以恢复除镜面外的各种物体的三维模型。缺点体现在过程多为数学计算、重建结果不够精细,另外不能忽视的是,SFS法需要准确的光源参数,包括位置与方向信息。这就导致其无法应用于诸如露天场景等具有复杂光线的情形中。

1.3 立体视觉法

立体视觉法[8](Multi-View Stereo,MVS)是另外一种常用的三维重建方法。主要包括直接利用测距器获取程距信息、通过一幅图像推测三维信息和利用不同视点上的两幅或多幅图像恢复三维信息等三种方式。通过模拟人类视觉系统,基于视差原理获取图像对应点之间的位置偏差,恢复出三维信息。S.T.Barnard[9]等人对20世纪70年代到80年代之间出现的三维重建的算法和评价体系做了概述。

到了80年代中后期,出现了更多、更深层次的视觉原理,包括立体测量方法和深度传感器等,极大的促进了相关学科的发展。新兴方法可以直接获取景物的三维信息,极大的节省了物力与人力成本。U.R.Dhond[10]等人提出了基于层次处理的三目立体约束方法。二十世纪90年代末,涌现出诸如图像匹配的前沿算法、遮挡处理算法等。M.Z.Brown[11]等人总结了2000年到2010年间的三维视觉发展的总体概况,包括遮挡、配准和效率等的相关分析。

双目立体视觉重建,在实际应用情况优于其他基于视觉的三维重建方法,也逐渐出现在一部分商业化产品上; 不足的是运算量仍然偏大,而且在基线距离较大的情况下重建效果明显降低 。
代表文章:AKIMOIO T Automatic creation of 3D facial models 1993
CHEN C L Visual binocular vison systems to solid model reconstruction2007

作为计算机视觉的关键技术之一,立体视觉法也其弊端。例如,立体视觉需要假设空间的平面是正平面,而实际情况却与此相差甚远。除此之外,匹配还存在歧义性:对于一幅图像上的某些特征点,另外的图像可能存在若干个与之相似的特征点。那么如何选取最适配的匹配点,显得较为棘手。如图1-2所示,展示了Middlebury[16]数据集中Teddy和Cones场景的基准彩色图像、标准视差以及通过Graph Cuts[17]算法获取的立体匹配视差估计结果。虽然视差结果体现出了景物的三维位置关系,但是某些像素点的视差与标准值仍有细微的差距。除此之外,对于如相机运动参数的确定、大型场景重建需要获取多帧图像等问题,也极大的影响了立体视觉的深层次应用。


图1-2(a) 基准彩色图像

图1-2(b) 标准视差
参考:立体匹配导论

2、主动式三维重建技术

主动式是指利用如激光、声波、电磁波等光源或能量源发射至目标物体,通过接收返回的光波来获取物体的深度信息。主动测距有莫尔条纹法、飞行时间法、结构光法和三角测距法等四种方法。

1.莫尔条纹法

莫尔条纹在生活中比较常见,如两层薄薄的丝绸重叠在一起,即可以看到不规则的莫尔(Morie)条纹;微风的吹动窗纱时,条纹亦随之运动。莫尔条纹法[18]起源于18世纪的法国,是一项古老又现代的测量方法。基本原理是将两块等间隔排列的直线簇或曲线簇图案重叠起来,以非常小的角度进行相对运动来形成莫尔条纹。如图1-3所示,在主光栅与指示光栅的交叉重合处,因光线的透射与遮挡而产生不同的明暗带,即莫尔条纹。莫尔条纹随着光栅的左右平移而发生垂直位移,此时产生的条纹相位信息体现了待测物体表面的深度信息,再通过逆向的解调函数,实现深度信息的恢复。这种方法具有精度高、实时性强的优点,但是其对光照较为敏感,抗干扰能力弱。


图1-3 双光栅莫尔条纹法

提出:WIKTIN recovering surface shape and orientation from texture (1987)(被引用454 次)。
发展:Warren 2010 对 wiktin 方法进行改进使用了透视投影;
Liboy 2006 给出了在纹理单元结构发生改变的情况下的重建方法。
优点:精度高,对光照和噪声不敏感。
缺点:只应用于具有规则纹理的物体。

2.飞行时间法

飞行时间法[19] (Time of Flight,ToF)指的是在光速及声速一定的前提下,通过测量发射信号与接收信号的飞行时间间隔来获得距离的方法。这种信号可以是超声波,也可以是红外线等。飞行时间法相较于立体视觉法而言,具有不受基线长度限制、与纹理无关、成像速度快等特点。但是其也有一定的缺点。首先,ToF相机的分辨率非常低。例如图1-4所示,当今分辨率最高的PMD Camcube 2.0 相机,也仅为204×204像素;其次,ToF相机容易受到环境因素的影响,如混合像素、外界光源等,导致景物深度不准确;最后,系统误差与随机误差对测量结果的影响很大,需要进行后期数据处理,主要体现在场景像素点的位置重合上。值得注意的是,ToF相机的售价达到了数万美元,受众较窄。



图1-4 SR4000 ToF相机

3.结构光法

结构光法[20](Structured Light)通过向表面光滑无特征的物体发射具有特征点的光线,依据光源中的立体信息辅助提取物体的深度信息。具体的过程包括两个步骤,首先利用激光投影仪向目标物体投射可编码的光束,生成特征点;然后根据投射模式与投射光的几何图案,通过三角测量原理计算摄像机光心与特征点之间的距离,由此便可获取生成特征点的深度信息,实现模型重建。这种可编码的光束就是结构光,包括各种特定样式的点、线、面等图案。结构光法解决了物体表面平坦、纹理单一、灰度变化缓慢等问题。因为实现简单且精度较高,所以结构光法的应用非常广泛,目前已有多家公司生产了以结构光技术为基础的硬件设备,如PrimeSense公司的Prime Sensor、微软公司的Kinect和华硕公司的Xtion PRO LIVE等产品[21]。图1-5展示了利用结构光技术采集文物三维信息的场景。
提出:Woodham 对 SFS 进行改进(1980 年):photometric method for determining surface orientation from multiple images (该文章被引用了 891 次)
发展:Noakes :非线性与噪声减除 2003 年;
Horocitz :梯度场合控制点 2004 年;
Tang :可信度传递与马尔科夫随机场 2005 年;
Basri :光源条件未知情况下的三维重建 2007 年;
Sun :非朗伯特 2007 年;
Hernandez :彩色光线进行重建方法 2007 年;
Shi :自标定的光度立体视觉法 2010 年。


图1-5 结构光法原理图

4.三角测距法

三角测距法[22]是一种非接触式的测距方法,以三角测量原理为基础。红外设备以一定的角度向物体投射红外线,光遇到物体后发生反射并被CCD(Charge-coupled Device,电荷耦合元件)图像传感器所检测。随着目标物体的移动,此时获取的反射光线也会产生相应的偏移值。根据发射角度、偏移距离、中心矩值和位置关系,便能计算出发射器到物体之间的距离。三角测距法在军工测量、地形勘探等领域中应用广泛。


参考文献

[1] Szeliski R. Computer vision: algorithms and applications[M]. Berlin: Springer, 2010.
[2] D. Marr, et al. A Computational Theory of Human Stereo Vision. Proc.R.Soc.Lond. 1979, B.204:301-328.
[3] Levoy, M. Pulli, et al. The Digital Michelangelo Project:3D Scanning of Large Statues. Proc.SIGGRAPH,2000.
[4] Anand A, Koppula H S, Joachims T, et al. Contextually guided semantic labeling and search for three-dimensional point clouds[J]. The International Journal of Robotics Research, 2013, 32(1):19-34.
[5] Mada S K, Smith M L, Smith L N, et al. Overview of passive and active vision techniques for hand-held 3D data acquisition [C]//Opto Ireland. International Society for Optics and Photonics, 2003: 16-27.
[6] D. A. Forsyth, J. Ponce, Computer Vision: A Modern Approach. Prentice Hall 2001
[7] Horn B. K. P. Shape from shading: a method for obtaining the shape of a smooth opaque object from one view. PhD thesis, Department of Electrical Engineering, MIT, Cambridge. 1970.
[8] Ikeuchi K. Determining surface orientations of specular surfaces by using the photometric stereo method [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions, 1981, (6): 661-669.
[9] S. T. Barnard, M. A. Fisehler. Computational Stereo[J].ACM Computing Surveys. 1982, Vol.14:553-572.
[10] U. R. Dhond, J. K. Aggarval. Struct from Stereo—A Review [J]. IEEE Trans. Systems, Man, and Cybemeties.1989, Vol.19: 1489-1510.

http://blog.csdn.net/wangyaninglm/article/details/51558310



来源:新机器视觉


申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566




评论
  • 汽车驾驶员监控系统又称DMS,是一种集中在车辆中的技术,用于实时跟踪和评估驾驶员状态及驾驶行为。随着汽车产业智能化转型,整合AI技术的DMS逐渐成为主流,AI模型通过大量数据进行持续训练,使得驾驶监控更加高效和精准。 驾驶员监测系统主要通过传感器、摄像头收集驾驶员的面部图像,定位头部姿势、人脸特征及行为特征,并通过各种异常驾驶行为检测模型运算来识别驾驶员的当前状态。如果出现任何异常驾驶行为(如疲劳,分心,抽烟,接打电话,无安全带等),将发出声音及视觉警报。此外,驾驶员的行为数据会被记录
    启扬ARM嵌入式 2024-12-20 09:14 119浏览
  •         不卖关子先说感受,真本书真是相见恨晚啊。字面意思,见到太晚了,我刚毕业或者刚做电子行业就应该接触到这本书的。我自己跌跌撞撞那么多年走了多少弯路,掉过多少坑,都是血泪史啊,要是提前能看到这本书很多弯路很多坑都是可以避免的,可惜这本书是今年出的,羡慕现在的年轻人能有这么丰富完善的资料可以学习,想当年我纯靠百度和论坛搜索、求助啊,连个正经师傅都没有,从软件安装到一步一布操作纯靠自己瞎摸索,然后就是搜索各种教程视频,说出来都是泪啊。  &
    DrouSherry 2024-12-19 20:00 192浏览
  • 耳机虽看似一个简单的设备,但不仅只是听音乐功能,它已经成为日常生活和专业领域中不可或缺的一部分。从个人娱乐到专业录音,再到公共和私人通讯,耳机的使用无处不在。使用高质量的耳机不仅可以提供优良的声音体验,还能在长时间使用中保护使用者听力健康。耳机产品的质量,除了验证产品是否符合法规标准,也能透过全面性的测试和认证过程,确保耳机在各方面:从音质到耐用性,再到用户舒适度,都能达到或超越行业标准。这不仅保护了消费者的投资,也提升了该公司在整个行业的产品质量和信誉!客户面临到的各种困难一家耳机制造商想要透
    百佳泰测试实验室 2024-12-20 10:37 285浏览
  • 国产数字隔离器已成为现代电子产品中的关键部件,以增强的性能和可靠性取代了传统的光耦合器。这些隔离器广泛应用于医疗设备、汽车电子、工业自动化和其他需要强大信号隔离的领域。准确测试这些设备是确保其质量和性能的基本步骤。如何测试数字隔离器测试数字隔离器需要精度和正确的工具集来评估其在各种条件下的功能和性能。以下设备对于这项任务至关重要:示波器:用于可视化信号波形并测量时序特性,如传播延迟、上升时间和下降时间。允许验证输入输出信号的完整性。频谱分析仪:测量电磁干扰(EMI)和其他频域特性。有助于识别信号
    克里雅半导体科技 2024-12-20 16:35 216浏览
  • 光耦合器,也称为光隔离器,是用于电气隔离和信号传输的多功能组件。其应用之一是测量电路中的电压。本文介绍了如何利用光耦合器进行电压测量,阐明了其操作和实际用途。使用光耦合器进行电压测量的工作原理使用光耦合器进行电压测量依赖于其在通过光传输信号的同时隔离输入和输出电路的能力。该过程包括:连接到电压源光耦合器连接在电压源上。输入电压施加到光耦合器的LED,LED发出的光与施加的电压成比例。光电二极管响应LED发出的光由输出侧的光电二极管或光电晶体管检测。随着LED亮度的变化,光电二极管的电阻相应减小,
    腾恩科技-彭工 2024-12-20 16:31 229浏览
  • 百佳泰特为您整理2024年12月各大Logo的最新规格信息。——————————USB▶ 百佳泰获授权进行 USB Active Cable 认证。▶ 所有符合 USB PD 3.2 标准的产品都有资格获得USB-IF 认证——————————Bluetooth®▶ Remote UPF Testing针对所有低功耗音频(LE Audio)和网格(Mesh)规范的远程互操作性测试已开放,蓝牙会员可使用该测试,这是随时测试产品的又一绝佳途径。——————————PCI Express▶ 2025年
    百佳泰测试实验室 2024-12-20 10:33 205浏览
  • 随着工业自动化和智能化的发展,电机控制系统正向更高精度、更快响应和更高稳定性的方向发展。高速光耦作为一种电气隔离与信号传输的核心器件,在现代电机控制中扮演着至关重要的角色。本文将详细介绍高速光耦在电机控制中的应用优势及其在实际工控系统中的重要性。高速光耦的基本原理及优势高速光耦是一种光电耦合器件,通过光信号传递电信号,实现输入输出端的电气隔离。这种隔离可以有效保护电路免受高压、电流浪涌等干扰。相比传统的光耦,高速光耦具备更快的响应速度,通常可以达到几百纳秒到几微秒级别的传输延迟。电气隔离:高速光
    晶台光耦 2024-12-20 10:18 236浏览
  •         在上文中,我们介绍了IEEE 802.3cz[1]协议提出背景,旨在定义一套光纤以太网在车载领域的应用标准,并介绍了XMII以及PCS子层的相关机制,在本篇中,将围绕IEEE 802.3cz-MultiGBASE-AU物理层的两个可选功能进行介绍。EEE功能        节能以太网(Energy-Efficient Ethernet)是用于在网络空闲时降低设备功耗的功能,在802.3cz的定义中,链
    经纬恒润 2024-12-19 18:47 103浏览
  • //```c #include "..\..\comm\AI8051U.h"  // 包含头文件,定义了硬件寄存器和常量 #include "stdio.h"              // 标准输入输出库 #include "intrins.h"         &n
    丙丁先生 2024-12-20 10:18 137浏览
  •                                                窗        外       年底将近,空气变得格外寒冷,估计这会儿北方已经是千里
    广州铁金刚 2024-12-23 11:49 188浏览
  • 汽车行业的变革正愈演愈烈,由交通工具到“第三生活空间”。业内逐渐凝聚共识:汽车的下半场在于智能化。而智能化的核心在于集成先进的传感器,以实现高等级的智能驾驶乃至自动驾驶,以及更个性、舒适、交互体验更优的智能座舱。毕马威中国《聚焦电动化下半场 智能座舱白皮书》数据指出,2026年中国智能座舱市场规模将达到2127亿元,5年复合增长率超过17%。2022年到2026年,智能座舱渗透率将从59%上升至82%。近日,在SENSOR CHINA与琻捷电子联合举办的“汽车传感系列交流会-智能传感专场”上,艾
    艾迈斯欧司朗 2024-12-20 19:45 328浏览
  • ALINX 正式发布 AMD Virtex UltraScale+ 系列 FPGA PCIe 3.0 综合开发平台 AXVU13P!这款搭载 AMD 16nm 工艺 XCVU13P 芯片的高性能开发验证平台,凭借卓越的计算能力和灵活的扩展性,专为应对复杂应用场景和高带宽需求而设计,助力技术开发者加速产品创新与部署。随着 5G、人工智能和高性能计算等领域的迅猛发展,各行业对计算能力、灵活性和高速数据传输的需求持续攀升。FPGA 凭借其高度可编程性和实时并行处理能力,已成为解决行业痛点的关
    ALINX 2024-12-20 17:44 230浏览
  • 光耦固态继电器(SSR)作为现代电子控制系统中不可或缺的关键组件,正逐步取代传统机械继电器。通过利用光耦合技术,SSR不仅能够提供更高的可靠性,还能适应更加复杂和严苛的应用环境。在本文中,我们将深入探讨光耦固态继电器的工作原理、优势、挑战以及未来发展趋势。光耦固态继电器:如何工作并打破传统继电器的局限?光耦固态继电器通过光电隔离技术,实现输入信号与负载之间的电气隔离。其工作原理包括三个关键步骤:光激活:LED接收输入电流并发出与其成比例的光信号。光传输:光电传感器(如光电二极管或光电晶体管)接收
    腾恩科技-彭工 2024-12-20 16:30 180浏览
  • Supernode与艾迈斯欧司朗携手,通过Belago红外LED实现精准扫地机器人避障;得益于Belago出色的红外补光功能,使扫地机器人能够大大提升其识别物体的能力,实现精准避障;Belago点阵照明器采用迷你封装,兼容标准无铅回流工艺,适用于各种3D传感平台,包括移动设备、物联网设备和机器人。全球领先的光学解决方案供应商艾迈斯欧司朗(瑞士证券交易所股票代码:AMS)近日宣布,与国内领先的多行业三维视觉方案提供商超节点创新科技(Supernode)双方联合推出采用艾迈斯欧司朗先进Belago红
    艾迈斯欧司朗 2024-12-20 18:55 222浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦