跨界应用,纳芯微NSHT30温湿度传感器为什么可以做到精准如一?

MEMS 2024-12-23 00:01


随着科技的不断发展,温湿度传感器在各个领域的应用越来越广泛,为人们的生产和生活带来了更多便利和效益。


本视频将重点介绍温湿度传感器的概念、原理、应用以及纳芯微NSHT30温湿度传感器的特点和优势;同时通过实际应用案例,帮助大家更深入了解温湿度传感器在现实中的应用。

湿度及其测量 

湿度是表征含水量的一个参数,以日常生活为例,可以理解为空气中水蒸气的含量。基于度量方法的不同,可以分为绝对湿度和相对湿度


绝对湿度表征的是水蒸气的绝对浓度,根据度量方法的不同,可以表述为水蒸气压、绝对湿度(1立方米空气中所包含的水蒸气质量)、水蒸气质量浓度、露点/霜点温度等;相对湿度表征的是水蒸气的相对浓度;该参数相对的对象是当前环境能够吸收水蒸气的最大量;同样,根据浓度度量方法的差异,可以描述为生活中常见的相对湿度(实际蒸汽压与饱和蒸汽压的比例)、蒸气压差(实际蒸气压与饱和蒸汽压的差值、露点温度差值(露点温度与环境温度差值)等。

湿度的定义


湿度可以通过一系列方法进行测量,比如传统的毛发湿度计,通过毛发吸收水蒸气形成一定的收缩来测量相对湿度。在工业温箱中,常会用到干湿球法湿度计,通过蒸发使温度降低,以温度差来度量相对湿度。另外,比较常见的高精度测量方法是露点仪,通过控制镜面温度,以光学测量方法寻找当前空气结霜结露的临界温度点来测量湿度。

测量湿度的方式


随着研究的进一步深入,还出现了一些测量湿度的传感器类产品。相比前面那些方法,这类产品在体积或信号处理方面有了较大的改善,测量装置的体积进一步缩小,集成度也更高。随着MEMS技术的发展,还可以将处理电路和敏感源合二为一,形成集成式温湿度传感器。


例如纳芯微的NSHT30就是基于CMOS MEMS工艺的集成式温湿度传感器,其湿度测量的基本原理是电容式测量。在材料吸收水蒸气后,会使介电常数发生变化,通过测量材料电容的方法即可测量相对湿度的变化。

电容式湿度传感器测量原理


电容式湿度测量的敏感材料,可以大致分为无机敏感材料(例如三氧化二铝)和有机敏感材料(例如醋酸丁酯,聚酰亚胺等)。有机材料相比三氧化二铝,在线性度,温度系数上存在显著优势,逐渐取代无机材料,应用于容式湿度传感器中;其中聚酰亚胺材料因其与CMOS工艺兼容性上的优势,在温湿度集成传感器上已成为主流。

聚酰亚胺材料检测湿度


温湿度传感器的应用场景很广泛,包括消费类的冰箱、洗衣机、空调;工业领域的应用主要是现场温湿度测量和监控;医疗方面的应用,如监控吸氧通道的湿度,提高人体吸氧的舒适度。车载类应用主要是进气歧管、车内空气/空调以及车窗自动除雾应用。

如何用NSHT30测量湿度和温度? 

NSHT30是纳芯微推出的集成了温度传感器和湿度传感器的敏感单元的温湿度传感器,片上还集成了模拟前端(AFE)信号放大和线性化处理单元,以及高速率IIC通信接口,以输出测量到的数据。该器件工作电压范围为2V到5.5V,其封装尺寸为2.5×2.5mm,有LGA和DFN两种形式。

集成了温度和湿度传感器的NSHT30温湿度传感器


NSHT30有两种测量模式:单次触发模式和周期触发模式。当需要温湿度数据时,首先通过I2C发送地址并加写0x88(ADDR引脚接地,7Bits IIC地址0x44),然后发送单次触发指令(0x24 0x00)。芯片收到指令后进行温湿度数据测量,等待20ms完成测量;主机再通过I2C发送读方向地址(0x89),然后读取连读6个字节,最后由主机发送Nack STOP结束通信,完成一次测量。


上述6个字节数据分别为两个字节湿度数据(高字节和低字节)和一个字节湿度CRC。温度也是两个字节数据(高字节和低字节),一个字节温度CRC。为了校验通信的数据是否正确,CRC拿到数据后要先进行校验,将湿度数据和温度数据通过CRC运算与CRC数据进行对比。CRC校验完成后,通过温湿度计算公式将数据转换成具体的温度值和湿度值。


周期触发模式测量首先是通过I2C给芯片发送周期测量指令0x27、0x37。这时,芯片是以固定周期进行自动测量。当需要温湿度数据时,只需发送0xE0 0x00数据获取指令就可以随时拿到数据,之后同样需要进行CRC校验和温湿度数据计算。

NSHT30的测量模式


需要注意的是,根据选用的主机不同,会存在大小端的问题。因此,在发送指令和读取数据时,需要注意字节的顺序。


在装配方面需要注意的是:

1




由于湿度传感器的敏感材料需要暴露在待测环境中才能进行测量,所以温湿度传感器与测量环境之间必须具备物理接触通道。

2




温湿度传感器区域和壳体内部需要进行物理隔离,以提高响应速度,降低壳体内部空气对相对湿度测试值的影响。

3




缩小温湿度传感器与壳体之间的区域体积,可进一步提高对待测环境的响应时间,最大程度保证敏感材料更多地接触待测环境,免受内部环境的影响。

4




如果使用环境比较恶劣,有粉尘或水等溅射的风险,可以在壳体开口处增加防水透气膜,防止传感器受到污染或进水而影响正常使用。

湿度响应时间和保护

在温湿度传感器布局方面,为了保证传感器温度与待测环境温度一致,可以从以下三个方向进行改善。


第一个改善方向是:传感器所在位置应尽量接触需要测量的区域。测量区域与传感器之间应避开发热源,以免待测区域的空气经过发热源而发热,导致传感器区域的相对湿度与测量区域的相对湿度不一致。


第二个改善方向是:降低传感器区域的热惯性,提高对空气温度变化的跟随能力。


以下方法可以改善对空气温度变化的跟随能力:一是降低PCB厚度,尽量不焊接中间的热焊盘,或将焊接焊盘与PCB覆铜隔离开来;二是采用独立的小板,通过插针连接主板;三是采用FPC软板连接主板。


第三个改善方向是:降低其他区域温度对传感器所在位置温度的影响,以下是几个基本方法:

一是装配时温湿度芯片应与主板热源之间形成物理隔离,降低空气热传导及热辐射的影响;二是尽量避免阳光直射传感器,降低经热辐射路径传递的热量,避免温度上升;三是将传感器尽量安装在独立的子板上。如果必须安装在主板芯片位置,应使热源尽量远离主板,并在湿度芯片附近开孔,以降低热源经电路板热传导对芯片温度的影响。

温湿度传感器布局

动手操作演示 

从温湿度传感器Demo中可以看到,上面是基于SPC设计的MCU板,下面是温湿度传感器的DUT板。首先将温湿度传感器的MCU USB插入电脑USB口,然后打开上位机可执行文件。

Demo硬件


这时可以看到第一个窗口显示的是温湿度数据,左边是图形界面,右边是数据显示界面,右上角是com口选择。

温湿度数据


第二个界面是温湿度传感器配置界面,左边是单模,有高、中、低三个重复率可以选择。高重复率意味着转换时间更长,转换数据的准确率最高。

温湿度传感器ID


分别选择高、中、低,可以看到下面指令的同步切换。右边是周期触发模式,可以选择采样率。采样率共有5个,从0.5MPs直到10MPs,一个MPs代表1秒采一次,0.5MPs是2秒采一次,最高10MPs,1秒采10次。然后与单模一样设置重复率,三种重复率有5种采样率,组合起来是15个指令,选择后可以看到指令的同步切换。右边是读取所有温湿度寄存器的设置,点击可以获取温湿度传感器寄存器数据。


在温湿度传感器ID中,下面是user寄存器、温度传感器报警功能的温度设置,还有湿度高于某个值、湿度高于某个值的报警设置,以及将温湿度值转换成16进制数据,或将16进制数据转换成温湿度值的双向转换。


选中正确的串口打开并开始测试,此时可以看到软件显示的实时温湿度数据。上位机可以保存温湿度数据,点击Excel setting按钮,新建一个Excel表将其命名为DAT。双击DAT,勾选保存按钮,此时采集的温湿度数据会同步保存到设置的Excel文件中。读取完毕打开Excel表,可以看到D列和F列的温度数据和湿度数据,E列和G列也是传感器的温度和湿度数据。


共同探索温湿度传感器应用更多可能性  

本文介绍了温湿度传感器的概念、应用、原理以及纳芯微NSHT30温湿度传感器的特点和优势。通过实际应用案例,使用纳芯微的NSHT30进行测量,深入了解了温湿度传感器在实际场景中的应用。此外,还讨论了如何优化温湿度传感器的布局和装配,以提高响应时间和准确性。


凭借高精度、快速响应和集成化设计,纳芯微NSHT30温湿度传感器已成为在市场得到了广泛应用。无论是消费类产品还是工业应用,NSHT30都能提供稳定可靠的温湿度测量,为人们的生活和工作带来极大的便利。

延伸阅读:
《传感器技术及市场-2024版》

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  •         在上文中,我们介绍了IEEE 802.3cz[1]协议提出背景,旨在定义一套光纤以太网在车载领域的应用标准,并介绍了XMII以及PCS子层的相关机制,在本篇中,将围绕IEEE 802.3cz-MultiGBASE-AU物理层的两个可选功能进行介绍。EEE功能        节能以太网(Energy-Efficient Ethernet)是用于在网络空闲时降低设备功耗的功能,在802.3cz的定义中,链
    经纬恒润 2024-12-19 18:47 89浏览
  • 汽车驾驶员监控系统又称DMS,是一种集中在车辆中的技术,用于实时跟踪和评估驾驶员状态及驾驶行为。随着汽车产业智能化转型,整合AI技术的DMS逐渐成为主流,AI模型通过大量数据进行持续训练,使得驾驶监控更加高效和精准。 驾驶员监测系统主要通过传感器、摄像头收集驾驶员的面部图像,定位头部姿势、人脸特征及行为特征,并通过各种异常驾驶行为检测模型运算来识别驾驶员的当前状态。如果出现任何异常驾驶行为(如疲劳,分心,抽烟,接打电话,无安全带等),将发出声音及视觉警报。此外,驾驶员的行为数据会被记录
    启扬ARM嵌入式 2024-12-20 09:14 101浏览
  •         不卖关子先说感受,真本书真是相见恨晚啊。字面意思,见到太晚了,我刚毕业或者刚做电子行业就应该接触到这本书的。我自己跌跌撞撞那么多年走了多少弯路,掉过多少坑,都是血泪史啊,要是提前能看到这本书很多弯路很多坑都是可以避免的,可惜这本书是今年出的,羡慕现在的年轻人能有这么丰富完善的资料可以学习,想当年我纯靠百度和论坛搜索、求助啊,连个正经师傅都没有,从软件安装到一步一布操作纯靠自己瞎摸索,然后就是搜索各种教程视频,说出来都是泪啊。  &
    DrouSherry 2024-12-19 20:00 112浏览
  • 国产数字隔离器已成为现代电子产品中的关键部件,以增强的性能和可靠性取代了传统的光耦合器。这些隔离器广泛应用于医疗设备、汽车电子、工业自动化和其他需要强大信号隔离的领域。准确测试这些设备是确保其质量和性能的基本步骤。如何测试数字隔离器测试数字隔离器需要精度和正确的工具集来评估其在各种条件下的功能和性能。以下设备对于这项任务至关重要:示波器:用于可视化信号波形并测量时序特性,如传播延迟、上升时间和下降时间。允许验证输入输出信号的完整性。频谱分析仪:测量电磁干扰(EMI)和其他频域特性。有助于识别信号
    克里雅半导体科技 2024-12-20 16:35 75浏览
  • 汽车行业的变革正愈演愈烈,由交通工具到“第三生活空间”。业内逐渐凝聚共识:汽车的下半场在于智能化。而智能化的核心在于集成先进的传感器,以实现高等级的智能驾驶乃至自动驾驶,以及更个性、舒适、交互体验更优的智能座舱。毕马威中国《聚焦电动化下半场 智能座舱白皮书》数据指出,2026年中国智能座舱市场规模将达到2127亿元,5年复合增长率超过17%。2022年到2026年,智能座舱渗透率将从59%上升至82%。近日,在SENSOR CHINA与琻捷电子联合举办的“汽车传感系列交流会-智能传感专场”上,艾
    艾迈斯欧司朗 2024-12-20 19:45 117浏览
  • 随着工业自动化和智能化的发展,电机控制系统正向更高精度、更快响应和更高稳定性的方向发展。高速光耦作为一种电气隔离与信号传输的核心器件,在现代电机控制中扮演着至关重要的角色。本文将详细介绍高速光耦在电机控制中的应用优势及其在实际工控系统中的重要性。高速光耦的基本原理及优势高速光耦是一种光电耦合器件,通过光信号传递电信号,实现输入输出端的电气隔离。这种隔离可以有效保护电路免受高压、电流浪涌等干扰。相比传统的光耦,高速光耦具备更快的响应速度,通常可以达到几百纳秒到几微秒级别的传输延迟。电气隔离:高速光
    晶台光耦 2024-12-20 10:18 150浏览
  • 耳机虽看似一个简单的设备,但不仅只是听音乐功能,它已经成为日常生活和专业领域中不可或缺的一部分。从个人娱乐到专业录音,再到公共和私人通讯,耳机的使用无处不在。使用高质量的耳机不仅可以提供优良的声音体验,还能在长时间使用中保护使用者听力健康。耳机产品的质量,除了验证产品是否符合法规标准,也能透过全面性的测试和认证过程,确保耳机在各方面:从音质到耐用性,再到用户舒适度,都能达到或超越行业标准。这不仅保护了消费者的投资,也提升了该公司在整个行业的产品质量和信誉!客户面临到的各种困难一家耳机制造商想要透
    百佳泰测试实验室 2024-12-20 10:37 170浏览
  • 百佳泰特为您整理2024年12月各大Logo的最新规格信息。——————————USB▶ 百佳泰获授权进行 USB Active Cable 认证。▶ 所有符合 USB PD 3.2 标准的产品都有资格获得USB-IF 认证——————————Bluetooth®▶ Remote UPF Testing针对所有低功耗音频(LE Audio)和网格(Mesh)规范的远程互操作性测试已开放,蓝牙会员可使用该测试,这是随时测试产品的又一绝佳途径。——————————PCI Express▶ 2025年
    百佳泰测试实验室 2024-12-20 10:33 124浏览
  • Supernode与艾迈斯欧司朗携手,通过Belago红外LED实现精准扫地机器人避障;得益于Belago出色的红外补光功能,使扫地机器人能够大大提升其识别物体的能力,实现精准避障;Belago点阵照明器采用迷你封装,兼容标准无铅回流工艺,适用于各种3D传感平台,包括移动设备、物联网设备和机器人。全球领先的光学解决方案供应商艾迈斯欧司朗(瑞士证券交易所股票代码:AMS)近日宣布,与国内领先的多行业三维视觉方案提供商超节点创新科技(Supernode)双方联合推出采用艾迈斯欧司朗先进Belago红
    艾迈斯欧司朗 2024-12-20 18:55 91浏览
  • ALINX 正式发布 AMD Virtex UltraScale+ 系列 FPGA PCIe 3.0 综合开发平台 AXVU13P!这款搭载 AMD 16nm 工艺 XCVU13P 芯片的高性能开发验证平台,凭借卓越的计算能力和灵活的扩展性,专为应对复杂应用场景和高带宽需求而设计,助力技术开发者加速产品创新与部署。随着 5G、人工智能和高性能计算等领域的迅猛发展,各行业对计算能力、灵活性和高速数据传输的需求持续攀升。FPGA 凭借其高度可编程性和实时并行处理能力,已成为解决行业痛点的关
    ALINX 2024-12-20 17:44 94浏览
  • 光耦固态继电器(SSR)作为现代电子控制系统中不可或缺的关键组件,正逐步取代传统机械继电器。通过利用光耦合技术,SSR不仅能够提供更高的可靠性,还能适应更加复杂和严苛的应用环境。在本文中,我们将深入探讨光耦固态继电器的工作原理、优势、挑战以及未来发展趋势。光耦固态继电器:如何工作并打破传统继电器的局限?光耦固态继电器通过光电隔离技术,实现输入信号与负载之间的电气隔离。其工作原理包括三个关键步骤:光激活:LED接收输入电流并发出与其成比例的光信号。光传输:光电传感器(如光电二极管或光电晶体管)接收
    腾恩科技-彭工 2024-12-20 16:30 65浏览
  • 光耦合器,也称为光隔离器,是用于电气隔离和信号传输的多功能组件。其应用之一是测量电路中的电压。本文介绍了如何利用光耦合器进行电压测量,阐明了其操作和实际用途。使用光耦合器进行电压测量的工作原理使用光耦合器进行电压测量依赖于其在通过光传输信号的同时隔离输入和输出电路的能力。该过程包括:连接到电压源光耦合器连接在电压源上。输入电压施加到光耦合器的LED,LED发出的光与施加的电压成比例。光电二极管响应LED发出的光由输出侧的光电二极管或光电晶体管检测。随着LED亮度的变化,光电二极管的电阻相应减小,
    腾恩科技-彭工 2024-12-20 16:31 79浏览
  • //```c #include "..\..\comm\AI8051U.h"  // 包含头文件,定义了硬件寄存器和常量 #include "stdio.h"              // 标准输入输出库 #include "intrins.h"         &n
    丙丁先生 2024-12-20 10:18 87浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦