中国科学院物理研究所索鎏敏研究员:筛选理想的预锂化正极应用于无负极金属锂电池

锂电联盟会长 2024-12-20 09:01

点击左上角“锂电联盟会长”,即可关注!

研究背景
无负极锂金属电池(AF-LMBs)在初始组装过程中移除了负极侧的锂,可以实现电芯层面的能量密度最大化,与此同时还具备成本和存储优势。然而,在没有负极侧锂补偿的情况下,任何不可逆的锂损失,如循环中死锂的生成和持续的副反应等,都会造成AF-LMBs的容量快速衰减。因此,引入预锂化正极来补充额外的活性锂能够有效延长AF-LMBs的循环寿命。此前工作表明,三元层状氧化物正极(LiTMO2, TM=Ni/Co/Mn, Li1相)在过放电到1.6V可以生成富锂相正极(Li2TMO2, Li2相),并在充电过程中完成逆转换,而不引入非活性物质。但是实际应用过程中深度富锂往往伴随结构失稳和容量的下降。因此寻找一种理想的预锂化正极,即具有宽的锂化限度和稳定的结构和电化学性能是至关重要的。


工作介绍
中国科学院物理研究所索鎏敏团队选择了两种常用的单晶高镍正极材料NCM622和NCM811为研究对象,通过化学预锂化(C-Li)和电化学预锂化(E-Li)方法将其转换为Li2TMO2。研究发现,NCM622具有高的锂化能力,可以实现100%程度上的Li2相转化,并且在高锂化度下仍旧较稳定的本征容量发挥和循环。另外,E-Li手段可以得到纯净目标产物Li2相,且在后续充电可逆的转换回Li2相,而不引起离子动力学损伤;相比之下C-Li方法会产生Li2O等非活性物质,导致电阻的不可逆增长和离子扩散能力的降低。基于E-Li得到的Li1+xNCM622的优异循环稳定性,无负极Li1.5NCM622|Cu扣式电池可以实现80%容量保持率的下循环寿命提升到190周,相较于处理前提升了5倍;Li1.33NCM622|Cu软包电池可实现200周循环后74%的高容量保持率。


内容介绍

图1:NCM622和NCM811的富锂化能力比较。(a)锂库存依赖的AF-LMBs循环寿命预测。(b)通过C-Li和E-Li获得Li2TMO2的示意图。(c)通过E-Li方法获得的NCM622和NCM811的最大锂化度。(d)采用C-Li方法预锂化时间与预锂化度之间的关系。(e) NCM622和NCM811的局部XRD图谱。(f) E-Li方法得到的Li1+xNCM811和Li1+xNCM622的放电比容量对比图,0.5 C对称循环。(g)从放电比容量、容量保持率、最大锂化度、锂化速度和结构稳定性等方面综合比较NCM622和NCM811。
NCM622表现出比NCM811更优异的锂化能力,包括更高的锂化度和更快速的锂化反应速率,如图1c和1d所示。NCM622优异的锂化能力可能与其晶体结构有关。根据图1e的XRD分析发现,NCM622在(003)峰处位较小,在(110)峰位较大,表明NCM622具有更大的c轴和更小的ab轴尺寸。这可能降低了Li+的扩散势垒,并且较低的镍含量也有助于减少Li/Ni混排,防止Li+的传输路径被阻塞。此外,如图1f,Li1+xNCM622在不同锂化度下表现出更好的循环稳定性。具体表现为,在x接近0.1时,Li1.12NCM622在200次循环后容量保持率为91.2%的,而Li1.1NCM811为82.9%;在x接近0.3时,Li1.33NCM622容量保持率90.2%,而Li1.3NCM811仅为67.9%。考虑到Li1+xNCM622在优异锂化能力和稳定循环稳定性方面的表现(图1g),我们更倾向于将Li1+xNCM622作为AF-LMBs预锂化正极的优先选择。
图2. Li1+xNCM622中E-Li和C-Li两种手段的比较。(a) (i) C-Li和(ii) E-Li方法获得的Li1+xNCM622初始放电容量和200周容量保持情况,C对称循环。(b) NCM622、E-Li得到的Li1.33NCM622和C-Li得到的Li1.3NCM622三者本征循环性能。(c) Li1+xNCM622 | Li在第4次和第200次循环时的电压曲线,虚线表示0.2C速率。(d) C1s的XPS光谱。(e) Li1s的XPS光谱。
如图2a、b、c所示,E-Li方法在初始放电比容量和循环稳定性方面远优于C-Li方法。采用E-Li法制得的Li1.33NCM622初始容量发挥为165.8 mAh/g(0.5C),并在200次循环后容量保持率为91.2%,这与原始NCM622的167.9 mAh/g和91.8%相当。
通过XPS分析E-Li和C-Li过程中的表面化学变化,发现E-Li方法生成了更纯净的Li2NCM622,如图2d和2e。然而,对于C-Li方法,除了Li2相外,还生成了许多副产物。在C 1s中283.8 eV和Li 1s中57.9 eV的峰值可归因于残留的锂化试剂(图S20)。55.93 eV的峰值来源于LiF,可能是锂化试剂与PVDF之间副反应的产物(图S19),这与F1s光谱中685 eV峰对应(图S21)。54.66 eV的峰值对应Li2O,可以归因于锂化试剂与Li2相之间的副反应(图S21-23),这与O1s光谱中531.3 eV处新峰相辅证。可以说,E-Li在1.6V的固定电位下生成的Li2相比C-Li在较低化学势锂化试剂下生成的Li2相更为纯净。
图3. C-Li和E-Li得到的Li1+xNCM622离子运输动力学比较。使用(a) E-Li处理得到的Li1.5NCM622、(b)初始NCM、(c) C-Li处理25小时得到的的Li1.5NCM622的Li半电池交流阻抗谱及拟合曲线。(d)解释动力学现象的公式和示意图。
为了深入了解E-Li和C-Li处理后离子运输动力学的变化,进行了电化学阻抗谱(EIS)表征。E-Li处理的Li1.5NCM622在1.6V时表现出较高的Rct为35.7 Ω。此外,观察到一个新半圆,代表界面电阻(Rint)为4.4 Ω,归因于Li1和Li2相之间边电阻界。等效电路如图S24所示。相边界的形成增加了电荷转移过程的复杂性。此外,Li2相的锂离子扩散动力学在低频区显示出较低的扩散性能(图S25),这一点通过恒电流间歇滴定法(GITT)测试得到了确认(图S26、S27)。这是由于锂离子占据了四面体空位,阻碍了内部锂离子扩散路径,同时Li1和Li2之间的相边界增加了扩散屏障,最终导致扩散性能变差。但在充电状态下Rint消失,Rct下降至约2.55 Ω,这与原始极片在3.8V下的阻抗水平相当。相比之下,C-Li处理的Li1.5NCM622的Rct和Rint显著增加了(图3c,表S1)。表面的复杂副产物阻碍了电子和离子的传输,导致Rint显著上升。此外,我们发现C-Li容易引起严重的Li/Ni混排(图S28)和相界面紊乱(图S29),这破坏了锂离子的运输路径,导致Rct增加和扩散系数的降低。值得注意的是,在充电后Rint仍然存在,这进一步证明界面电阻主要来自副产物与活性材料之间的相互作用(图3d)。上述表征和分析证明了E-Li手段在产物化学组成和动力学性能上的优势。
图4. NCM622|Li半电池的准原位阻抗测试,1.2-4.3 V范围内0.1C对称循环。(a)电压曲线及从阻抗谱中得到的Rw和ω^-1/2的斜率值。(b)从电路拟合得到的各种R值的图示。(c)在标记点处与不同SoC%对应的DRT图。
为跟踪锂插层和脱插层过程中的阻抗演化(Li0→Li1→Li2→Li1→Li0),我们采用了恒电流充放电技术并结合准原位EIS进行测试。如图4a所示,包含Li2相特征的区域具有较低的离子扩散能力。如图4b和表S4,与两相反应相关的锂化(1.6V)和脱锂(2.3V)过程表现出更为明显的Rint和显著增加的Rct,当充电电压升高到约3.7 V时,电阻值迅速恢复到接近初始状态的水平。为了进一步分离不同电化学过程,我们选择了5个代表性点进行了弛豫时间分布(DRT)分析(图4c)。频谱被划分为三个特征部分:高频(低τ)对应SEI层和界面电阻,中频对应Rct,低频(高τ)对应离子扩散。锂化状态(点15)在高频区有一个额外的峰值相较于点5,这可能代表Li1和Li2之间的界面电阻。此外,在中频范围内还有另一个新的峰值,可能代表Li2相的Rct。离子扩散过程对应的峰值在强度上显著增加,并且出现向低频方向的位移。在充电过程中(点22和27),中频区域对应Li2的Rct峰值显示强度降低,并向高频方向偏移。此外,低频区域的峰值强度也显示出明显的下降趋势。这一现象证明了Li2相含量的减少。到点35时,离子扩散的特征频率恢复到了初始水平,且未观察到代表Li₂相Rct的峰值。这表明Li₂相的可逆转化已经实现。上述表征结果证明,E-Li方法是获得富锂相Li1+xNCM622的可行且有前景的方法。
图5. (a) GITT曲线及在NCM622的第1周和第二周中不同SOC%下的锂离子扩散系数计算结果。(b)过放电态下颗粒横截面的SEM图像。
尽管E-Li方法能够实现Li2NCM622的可逆制备,我们仍然需要关注锂补充量与正极稳定性之间的平衡。为了进一步确定NCM622的最优锂化度极限,我们对不同锂化度的正极进行了GITT测试,并结合过度放电状态下颗粒横截面的SEM图像进行了分析。原始NCM622的锂离子扩散系数在两次循环中保持不变。在锂化度x = 0.2和0.4的条件下,扩散系数较原始保持不变,颗粒内部形貌均匀。随着锂化度持续增加到0.6,初级颗粒内部出现明显的裂纹,同时在高电压充电状态下,扩散系数下降。最终,当锂化度达到0.8时,颗粒内部产生了大量裂纹,高电压下的扩散系数也进一步恶化。因此,需要尽量确保锂化度x < 0.6,以避免对动力学和内部结构产生不利影响。
图6.使用Li1+xNCM622和NCM622正极的AF-LMBs。(a) AF-LMBs纽扣电池的循环性能(NCM622|Cu和Li1.5NCM622|Cu)。(b) Li1.5NCM622制备曲线与Li1.5NCM622|Cu在第1次和第189次循环的电压曲线。(c) AF-LMBs软包电池(NCM622|Cu,Li1.33NCM622|Cu,NCM622|5 μm Li)。(d) Li1.33NCM622|Cu软包电池的电压曲线。
基于E-Li方法获得的Li1+xNCM622在半电池中的优异性能,我们分别组装了使用Li1+xNCM622和NCM622电极(21.1 mg/cm²)的AF-LMBs。如图6a所示,Li1.5NCM622|Cu电池在对应80%容量保持的循环寿命上增加了5倍(189周vs. 37周),并在第190次循环时容量保持率提高了41%(80% vs. 39%)。为了验证Li1+xNCM622在实际软包电池中的效果,我们组装了90 mAh级别的单层Li1.33NCM622|Cu(锂补充量与5μmLi相当)。图6c显示,Li1.33NCM622|Cu软包电池表现出最佳的循环寿命,200次循环后的容量保持率为74%,相比之下,NCM622|Cu为45%,NCM622|5μm Li为67%。


结论
本研究表明,通过E-Li方法处理得到的Li1+xNCM622能够同时实现优异的锂化度和稳定的循环性能。经XPS和EIS验证,E-Li可以得到纯净目标产物Li2相,且在后续充电可逆的转换回Li2相,将锂化度控制在60%以内不引起高压下离子动力学损伤。Li1.5NCM622|Cu纽扣电池在190次循环后仍能保持80%的容量保持率,Li1.33NCM622|Cu软包电池的200周循环容量保持率可实现74%。

Searching for the Ideal Li1+xTMO2Cathode for Anode-free Li Metal Batteries
Tingting Xu, Kun Qin, Chunxi Tian, Liangdong Lin, Weiping Li, Liumin Suo*


索鎏敏,研究员。
中国科学院物理研究所研究员,博士生导师。长期专注于新型电池体系及其功能电解质基础研究与开发,具体涵盖:(1)下一代锂电池新型电解液体系探索开发及基础科学问题研究;(2)安全、绿色、低成本高电压水系锂离子储能电池;(3)高能量密度无负极金属锂动力电池(4)高能量密度金属锂硫基动力电池。主持中国科学院青年交叉团队,国家自然科学基金企业联合基金重点项目,国家重点研发计划(课题负责人)和壳牌公司国际合作项目等横纵向课题项目。近年来发表SCI论文81篇(IF>10, 62篇),申请发表专利25项。其中通讯/一作文章48篇:包括Science、Nature子刊(6篇)、Science Advances/PNAS (3 篇)、Angew/JACS/Adv. Mater. (13篇)等。

婷婷,2022于本科毕业于天津大学,目前于中国科学院物理研究所索鎏敏研究员课题组攻读硕士和博士学位。主要研究方向为无负极金属锂电池延寿策略开发和固态化。


文章信息
Tingting Xu, Kun Qin, Chunxi Tian, Liangdong Lin, Weiping Li, Liumin Suo, Searching for the Ideal Li1+xTMO2 Cathode for Anode-free Li Metal Batteries, Energy Storage Materials (2024)
https://doi.org/10.1016/j.ensm.2024.103956.
来源:深水科技咨询
锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com或微信Ydnxke。
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)


锂电联盟会长 研发材料,应用科技
评论
  • 百佳泰特为您整理2024年12月各大Logo的最新规格信息。——————————USB▶ 百佳泰获授权进行 USB Active Cable 认证。▶ 所有符合 USB PD 3.2 标准的产品都有资格获得USB-IF 认证——————————Bluetooth®▶ Remote UPF Testing针对所有低功耗音频(LE Audio)和网格(Mesh)规范的远程互操作性测试已开放,蓝牙会员可使用该测试,这是随时测试产品的又一绝佳途径。——————————PCI Express▶ 2025年
    百佳泰测试实验室 2024-12-20 10:33 16浏览
  • By Toradex秦海1). 简介为了保证基于 IEEE 802.3 协议设计的以太网设备接口可以互相兼容互联互通,需要进行 Ethernet Compliance 一致性测试,相关的技术原理说明请参考如下文章,本文就不赘述,主要展示基于 NXP i.MX8M Mini ARM 处理器平台进行 1000M/100M/10M 以太网端口进行一致性测试的测试流程。https://www.toradex.com
    hai.qin_651820742 2024-12-19 15:20 78浏览
  • 耳机虽看似一个简单的设备,但不仅只是听音乐功能,它已经成为日常生活和专业领域中不可或缺的一部分。从个人娱乐到专业录音,再到公共和私人通讯,耳机的使用无处不在。使用高质量的耳机不仅可以提供优良的声音体验,还能在长时间使用中保护使用者听力健康。耳机产品的质量,除了验证产品是否符合法规标准,也能透过全面性的测试和认证过程,确保耳机在各方面:从音质到耐用性,再到用户舒适度,都能达到或超越行业标准。这不仅保护了消费者的投资,也提升了该公司在整个行业的产品质量和信誉!客户面临到的各种困难一家耳机制造商想要透
    百佳泰测试实验室 2024-12-20 10:37 62浏览
  • 随着工业自动化和智能化的发展,电机控制系统正向更高精度、更快响应和更高稳定性的方向发展。高速光耦作为一种电气隔离与信号传输的核心器件,在现代电机控制中扮演着至关重要的角色。本文将详细介绍高速光耦在电机控制中的应用优势及其在实际工控系统中的重要性。高速光耦的基本原理及优势高速光耦是一种光电耦合器件,通过光信号传递电信号,实现输入输出端的电气隔离。这种隔离可以有效保护电路免受高压、电流浪涌等干扰。相比传统的光耦,高速光耦具备更快的响应速度,通常可以达到几百纳秒到几微秒级别的传输延迟。电气隔离:高速光
    晶台光耦 2024-12-20 10:18 26浏览
  • 沉寂已久的无人出租车赛道,在2024年突然升温了。前脚百度旗下萝卜快跑,宣布无人驾驶单量突破800万单;后脚特斯拉就于北京时间10月11日上午,召开了以“We,Robot”为主题的发布会,公布了无人驾驶车型Cybercab和Robovan,就连低调了好几个月的滴滴也在悄悄扩编,大手笔加码Robotaxi。不止是滴滴、百度、特斯拉,作为Robotaxi的重磅选手,文远知行与小马智行,也分别在10月份先后启动美股IPO,极氪也在近日宣布,其与Waymo合作开发的无人驾驶出行汽车将大规模量产交付,无人
    刘旷 2024-12-19 11:39 121浏览
  •         在上文中,我们介绍了IEEE 802.3cz[1]协议提出背景,旨在定义一套光纤以太网在车载领域的应用标准,并介绍了XMII以及PCS子层的相关机制,在本篇中,将围绕IEEE 802.3cz-MultiGBASE-AU物理层的两个可选功能进行介绍。EEE功能        节能以太网(Energy-Efficient Ethernet)是用于在网络空闲时降低设备功耗的功能,在802.3cz的定义中,链
    经纬恒润 2024-12-19 18:47 21浏览
  • 汽车驾驶员监控系统又称DMS,是一种集中在车辆中的技术,用于实时跟踪和评估驾驶员状态及驾驶行为。随着汽车产业智能化转型,整合AI技术的DMS逐渐成为主流,AI模型通过大量数据进行持续训练,使得驾驶监控更加高效和精准。 驾驶员监测系统主要通过传感器、摄像头收集驾驶员的面部图像,定位头部姿势、人脸特征及行为特征,并通过各种异常驾驶行为检测模型运算来识别驾驶员的当前状态。如果出现任何异常驾驶行为(如疲劳,分心,抽烟,接打电话,无安全带等),将发出声音及视觉警报。此外,驾驶员的行为数据会被记录
    启扬ARM嵌入式 2024-12-20 09:14 17浏览
  • 在强调可移植性(portable)的年代,人称「二合一笔电」的平板笔电便成为许多消费者趋之若鹜的3C产品。说到平板笔电,不论是其双向连接设计,面板与键盘底座可分离的独特功能,再加上兼具笔电模式、平板模式、翻转模式及帐篷模式等多种使用方式,让使用者在不同的使用情境下都能随意调整,轻巧灵活的便利性也为多数消费者提供了绝佳的使用体验。然而也正是这样的独特设计,潜藏着传统笔电供货商在产品设计上容易忽视的潜在风险。平板笔电Surface Pro 7+ 的各种使用模式。图片出处:Microsoft Comm
    百佳泰测试实验室 2024-12-19 17:40 121浏览
  • //```c #include "..\..\comm\AI8051U.h"  // 包含头文件,定义了硬件寄存器和常量 #include "stdio.h"              // 标准输入输出库 #include "intrins.h"         &n
    丙丁先生 2024-12-20 10:18 24浏览
  •         不卖关子先说感受,真本书真是相见恨晚啊。字面意思,见到太晚了,我刚毕业或者刚做电子行业就应该接触到这本书的。我自己跌跌撞撞那么多年走了多少弯路,掉过多少坑,都是血泪史啊,要是提前能看到这本书很多弯路很多坑都是可以避免的,可惜这本书是今年出的,羡慕现在的年轻人能有这么丰富完善的资料可以学习,想当年我纯靠百度和论坛搜索、求助啊,连个正经师傅都没有,从软件安装到一步一布操作纯靠自己瞎摸索,然后就是搜索各种教程视频,说出来都是泪啊。  &
    DrouSherry 2024-12-19 20:00 39浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦